Small-molecule activation of OGG1 increases oxidative DNA damage repair by gaining a new function
暂无分享,去创建一个
A. Osorio | T. Helleday | Celestine N. Chi | E. Homan | R. Perona | Oriol Calvete | T. Visnes | O. Mortusewicz | U. W. Berglund | C. Hertweck | M. Scobie | T. Koolmeister | A. Jemth | K. Sanjiv | O. Loseva | Antonio Sarno | G. Masuyer | P. Stenmark | C. Benítez-Buelga | H. Haslene-Hox | A. Sastre-Perona | O. Wallner | Alexandra Stolz | Sergio Castañeda-Zegarra | I. Vilotijević | P. A. Calvo | M. de Vega | M. Henriksson | A. Komor | Catharina von Nicolai | M. Pandey | F. Schömberg | Julian J Albers | A. Rasti | C. Kalderén | J. Davies | K. Marimuthu | S. Karsten | M. Michel | E. Wiita | Varshni Rajagopal | Dana Michel | P. Marttila | Simon Loevenich | E. Scaletti | Z. Zhenjun | Ana de Ory | F. Ortis | Bishoy M F Hanna | Akhilesh N Danda | Sarah Müller | Emily C Hank | Marek Varga | Kirill Mamonov | J. Stewart | Nicholas D'Arcy-Evans | L. Acero | O. Calvete | A. N. Danda | Petra Marttila | Tobias Koolmeister | Elisée Wiita | Carlos Benítez-Buelga | Fritz Schömberg | Ivan Vilotijević | Kumar Sanjiv
[1] F. LaFerla,et al. MTH1 and OGG1 maintain a low level of 8-oxoguanine in Alzheimer's brain, and prevent the progression of Alzheimer's pathogenesis , 2021, Scientific Reports.
[2] I. Minko,et al. Enhanced cytarabine-induced killing in OGG1-deficient acute myeloid leukemia cells , 2021, Proceedings of the National Academy of Sciences.
[3] A. Dobrzyń,et al. A Novel Role for the DNA Repair Enzyme 8-Oxoguanine DNA Glycosylase in Adipogenesis , 2021, International journal of molecular sciences.
[4] J. Benítez,et al. Small molecule inhibitor of OGG1 blocks oxidative DNA damage repair at telomeres and potentiates methotrexate anticancer effects , 2020, Scientific Reports.
[5] J. Benítez,et al. Targeting OGG1 arrests cancer cell proliferation by inducing replication stress , 2020, Nucleic acids research.
[6] T. Helleday,et al. OGG1 Inhibitor TH5487 Alters OGG1 Chromatin Dynamics and Prevents Incisions , 2020, Biomolecules.
[7] V. Band,et al. Endogenous oxidized DNA bases and APE1 regulate the formation of G-quadruplex structures in the genome , 2020, Proceedings of the National Academy of Sciences.
[8] J. Bergemann,et al. The activity of the DNA repair enzyme hOGG1 can be directly modulated by ubiquinol. , 2020, DNA repair.
[9] E. Sergienko,et al. Boosting NAD+ with a small molecule that activates NAMPT , 2019, Nature Communications.
[10] B. Seashore-Ludlow,et al. Computational and Experimental Druggability Assessment of Human DNA Glycosylases , 2019, ACS omega.
[11] P. Artursson,et al. Small-molecule inhibitor of OGG1 suppresses proinflammatory gene expression and inflammation , 2018, Science.
[12] T. Helleday,et al. Targeting BER enzymes in cancer therapy. , 2018, DNA repair.
[13] Shaoyong Lu,et al. Identification of a cellularly active SIRT6 allosteric activator , 2018, Nature Chemical Biology.
[14] A. Dobrzyń,et al. The DNA Repair Protein OGG1 Protects Against Obesity by Altering Mitochondrial Energetics in White Adipose Tissue , 2018, Scientific Reports.
[15] W. Rumsey,et al. Enhanced mitochondrial DNA repair of the common disease‐associated variant, Ser326Cys, of hOGG1 through small molecule intervention , 2018, Free radical biology & medicine.
[16] D. Auld,et al. Potent and Selective Inhibitors of 8-Oxoguanine DNA Glycosylase. , 2018, Journal of the American Chemical Society.
[17] P. Srivastava,et al. Targeting DNA repair with PNKP inhibition sensitizes radioresistant prostate cancer cells to high LET radiation , 2018, PloS one.
[18] A. Mai,et al. Structural Basis of Sirtuin 6 Activation by Synthetic Small Molecules. , 2017, Angewandte Chemie.
[19] R. Lloyd,et al. Small Molecule Inhibitors of 8-Oxoguanine DNA Glycosylase-1 (OGG1). , 2015, ACS chemical biology.
[20] P. Nordlund,et al. The cellular thermal shift assay for evaluating drug target interactions in cells , 2014, Nature Protocols.
[21] Dudley Lamming,et al. Evidence for a Common Mechanism of SIRT1 Regulation by Allosteric Activators , 2013, Science.
[22] Jie Wu,et al. An efficient route to 1-aminoisoquinolines via AgOTf-catalyzed reaction of 2-alkynylbenzaldoxime with amine. , 2011, Organic & biomolecular chemistry.
[23] M. Salas,et al. Editing of misaligned 3′-termini by an intrinsic 3′–5′ exonuclease activity residing in the PHP domain of a family X DNA polymerase , 2008, Nucleic acids research.
[24] D. Boger,et al. A fluorescent intercalator displacement assay for establishing DNA binding selectivity and affinity. , 2004, Accounts of chemical research.
[25] J. Christopher Fromme,et al. Product-assisted catalysis in base-excision DNA repair , 2003, Nature Structural Biology.
[26] A. Grollman,et al. Cloning and characterization of a mammalian 8-oxoguanine DNA glycosylase. , 1997, Proceedings of the National Academy of Sciences of the United States of America.
[27] S. Wallace,et al. A novel, sensitive, and specific assay for abasic sites, the most commonly produced DNA lesion. , 1992, Biochemistry.