A Horseshoe mixture model for Bayesian screening with an application to light sheet fluorescence microscopy in brain imaging

Finding parsimonious models through variable selection is a fundamental problem in many areas of statistical inference. Here, we focus on Bayesian regression models, where variable selection can be implemented through a regularizing prior imposed on the distribution of the regression coefficients. In the Bayesian literature, there are two main types of priors used to accomplish this goal: the spike-and-slab and the continuous scale mixtures of Gaussians. The former is a discrete mixture of two distributions characterized by low and high variance. In the latter, a continuous prior is elicited on the scale of a zero-mean Gaussian distribution. In contrast to these existing methods, we propose a new class of priors based on discrete mixture of continuous scale mixtures providing a more general framework for Bayesian variable selection. To this end, we substitute the observation-specific local shrinkage parameters (typical of continuous mixtures) with mixture component shrinkage parameters. Our approach drastically reduces the number of parameters needed and allows sharing information across the coefficients, improving the shrinkage ef-

[1]  E. George,et al.  APPROACHES FOR BAYESIAN VARIABLE SELECTION , 1997 .

[2]  James G. Scott,et al.  Shrink Globally, Act Locally: Sparse Bayesian Regularization and Prediction , 2022 .

[3]  Jeff W. Lichtman,et al.  Clarifying Tissue Clearing , 2015, Cell.

[4]  Gabriel M. Belfort,et al.  Npas4 Regulates a Transcriptional Program in CA3 Required for Contextual Memory Formation , 2011, Science.

[5]  M. Wand,et al.  Mean field variational Bayes for continuous sparse signal shrinkage: Pitfalls and remedies , 2014 .

[6]  Lancelot F. James,et al.  Gibbs Sampling Methods for Stick-Breaking Priors , 2001 .

[7]  Mathias Drton,et al.  Robust Bayesian Graphical Modeling Using Dirichlet $t$-Distributions , 2014 .

[8]  Mathias Drton,et al.  Robust graphical modeling of gene networks using classical and alternative t-distributions , 2010, 1009.3669.

[9]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[10]  Nicholas G. Polson,et al.  The Horseshoe-Like Regularization for Feature Subset Selection , 2019, Sankhya B.

[11]  G. Casella,et al.  The Bayesian Lasso , 2008 .

[12]  S. Gandhi,et al.  Imaging the dynamic recruitment of monocytes to the blood–brain barrier and specific brain regions during Toxoplasma gondii infection , 2019, Proceedings of the National Academy of Sciences.

[13]  Nicholas G. Polson,et al.  Lasso Meets Horseshoe: A Survey , 2017, Statistical Science.

[14]  J. Griffin,et al.  Inference with normal-gamma prior distributions in regression problems , 2010 .

[15]  Yingxi Lin,et al.  Npas4: Linking Neuronal Activity to Memory , 2016, Trends in Neurosciences.

[16]  Aad van der Vaart,et al.  Uncertainty Quantification for the Horseshoe (with Discussion) , 2016, 1607.01892.

[17]  Cheuk Y. Tang,et al.  Mapping of Brain Activity by Automated Volume Analysis of Immediate Early Genes , 2016, Cell.

[18]  E. George,et al.  Journal of the American Statistical Association is currently published by American Statistical Association. , 2007 .

[19]  B. Mallick,et al.  Fast sampling with Gaussian scale-mixture priors in high-dimensional regression. , 2015, Biometrika.

[20]  George Karabatsos,et al.  Dirichlet process mixture models with shrinkage prior , 2021, Stat.

[21]  Lydia Ng,et al.  Allen Brain Atlas: an integrated spatio-temporal portal for exploring the central nervous system , 2012, Nucleic Acids Res..

[22]  Aki Vehtari,et al.  Sparsity information and regularization in the horseshoe and other shrinkage priors , 2017, 1707.01694.

[23]  B. Shahbaba,et al.  Bayesian nonparametric variable selection as an exploratory tool for discovering differentially expressed genes , 2013, Statistics in medicine.

[24]  James G. Scott,et al.  The horseshoe estimator for sparse signals , 2010 .

[25]  Demetris K. Roumis,et al.  Functional Specialization of Mouse Higher Visual Cortical Areas , 2011, Neuron.

[26]  Mark Hübener,et al.  Mouse visual cortex , 2003, Current Opinion in Neurobiology.

[27]  C. Carvalho,et al.  Decoupling Shrinkage and Selection in Bayesian Linear Models: A Posterior Summary Perspective , 2014, 1408.0464.

[28]  M. Stryker,et al.  Modulation of Visual Responses by Behavioral State in Mouse Visual Cortex , 2010, Neuron.

[29]  J. Sethuraman A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .

[30]  Daniel F. Schmidt,et al.  High-Dimensional Bayesian Regularised Regression with the BayesReg Package , 2016, 1611.06649.

[31]  Gertraud Malsiner-Walli,et al.  Model-based clustering based on sparse finite Gaussian mixtures , 2014, Statistics and Computing.

[32]  T. J. Mitchell,et al.  Bayesian Variable Selection in Linear Regression , 1988 .

[33]  E. George,et al.  The Spike-and-Slab LASSO , 2018 .

[34]  M. Greenberg,et al.  The regulation and function of c-fos and other immediate early genes in the nervous system , 1990, Neuron.

[35]  Athar N. Malik,et al.  Activity-dependent regulation of inhibitory synapse development by Npas4 , 2008, Nature.

[36]  Nicholas G. Polson,et al.  The Horseshoe+ Estimator of Ultra-Sparse Signals , 2015, 1502.00560.

[37]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[38]  N. Pillai,et al.  Dirichlet–Laplace Priors for Optimal Shrinkage , 2014, Journal of the American Statistical Association.

[39]  Frühwirth-SchnatterSylvia,et al.  Model-based clustering based on sparse finite Gaussian mixtures , 2016 .

[40]  Yves Rosseel,et al.  neuRosim: An R Package for Generating fMRI Data , 2011 .

[41]  Qing Li,et al.  The Bayesian elastic net , 2010 .

[42]  David B. Dunson,et al.  The Multiple Bayesian Elastic Net , 2010 .

[43]  B. Efron Size, power and false discovery rates , 2007, 0710.2245.

[44]  Allon M. Klein,et al.  Single-Cell Analysis of Experience-Dependent Transcriptomic States in Mouse Visual Cortex , 2017, Nature Neuroscience.

[45]  Ka Yee Yeung,et al.  Bayesian mixture model based clustering of replicated microarray data , 2004, Bioinform..

[46]  H. Rue Fast sampling of Gaussian Markov random fields , 2000 .

[47]  J. S. Rao,et al.  Spike and slab variable selection: Frequentist and Bayesian strategies , 2005, math/0505633.

[48]  Anirban Bhattacharya,et al.  Scalable Approximate MCMC Algorithms for the Horseshoe Prior , 2020, J. Mach. Learn. Res..

[49]  David B Dunson,et al.  Bayesian Semiparametric Multiple Shrinkage , 2010, Biometrics.

[50]  James G. Scott,et al.  The Bayesian bridge , 2011, 1109.2279.