Stable alkanes containing very long carbon-carbon bonds.

The metal-induced coupling of tertiary diamondoid bromides gave highly sterically congested hydrocarbon (hetero)dimers with exceptionally long central C-C bonds of up to 1.71 Å in 2-(1-diamantyl)[121]tetramantane. Yet, these dimers are thermally very stable even at temperatures above 200 °C, which is not in line with common C-C bond length versus bond strengths correlations. We suggest that the extraordinary stabilization arises from numerous intramolecular van der Waals attractions between the neighboring H-terminated diamond-like surfaces. The C-C bond rotational dynamics of 1-(1-adamantyl)diamantane, 1-(1-diamantyl)diamantane, 2-(1-adamantyl)triamantane, 2-(1-diamantyl)triamantane, and 2-(1-diamantyl)[121]tetramantane were studied through variable-temperature (1)H- and (13)C NMR spectroscopies. The shapes of the inward (endo) CH surfaces determine the dynamic behavior, changing the central C-C bond rotation barriers from 7 to 33 kcal mol(-1). We probe the ability of popular density functional theory (DFT) approaches (including BLYP, B3LYP, B98, B3LYP-Dn, B97D, B3PW91, BHandHLYP, B3P86, PBE1PBE, wB97XD, and M06-2X) with 6-31G(d,p) and cc-pVDZ basis sets to describe such an unusual bonding situation. Only functionals accounting for dispersion are able to reproduce the experimental geometries, while most DFT functionals are able to reproduce the experimental rotational barriers due to error cancellations. Computations on larger diamondoids reveal that the interplay between the shapes and the sizes of the CH surfaces may even allow the preparation of open-shell alkyl radical dimers (and possibly polymers) that are strongly held together exclusively by dispersion forces.

[1]  A. A. Fokin,et al.  [123]Tetramantane: parent of a new family of sigma-helicenes. , 2009, Journal of the American Chemical Society.

[2]  A. A. Fokin,et al.  Photoacetylation of Diamondoids: Selectivities and Mechanism , 2009 .

[3]  Clémence Corminboeuf,et al.  How accurate are DFT treatments of organic energies? , 2007, Organic letters.

[4]  A. Becke A New Mixing of Hartree-Fock and Local Density-Functional Theories , 1993 .

[5]  K. Murakoshi,et al.  Negligible diradical character for the ultralong C–C bond in 1,1,2,2-tetraarylpyracene derivatives at room temperature , 2009 .

[6]  J. Tomasi,et al.  Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects , 1981 .

[7]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[8]  R. Kahn,et al.  Crystal structure of cyclohexane I and II , 1973 .

[9]  J. Kraut,et al.  Mechanism of single-bond shortening. Evidence from the crystal structures of 1-biapocamphane, 1-binorbornane, and 1-biadamantane , 1968 .

[10]  J. Kraut,et al.  Hybridization, conjugation, and bond lengths. An experimental test , 1967 .

[11]  C. Rüchardt,et al.  Thermolabile Kohlenwasserstoffe, XIV. Thermische Stabilität, Spannungsenthalpie und Struktur symmetrisch hexaalkylierter Ethane , 1980 .

[12]  Donald G Truhlar,et al.  Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions. , 2006, Journal of chemical theory and computation.

[13]  Koichi Tanaka,et al.  A New Synthetic Route to 1,2‐Dihydrocyclobutaarenes , 1994 .

[14]  Hans Peter Lüthi,et al.  Interaction energies of van der Waals and hydrogen bonded systems calculated using density functional theory: Assessing the PW91 model , 2001 .

[15]  P. Schreiner,et al.  σ/σ- And π/π-interactions are equally important: multilayered graphanes. , 2011, Journal of the American Chemical Society.

[16]  Fumio Toda,et al.  Extremely Long C-C Bond in (-)-trans-1,2-Di-tert-butyl-1,2-diphenyl- and 1,1-Di-tert-butyl-2,2-diphenyl-3,8-dichlorocyclobuta[b]naphthalenes. , 1999, The Journal of organic chemistry.

[17]  G. P. Moss Basic terminology of stereochemistry (IUPAC Recommendations 1996) , 1996 .

[18]  K. Hirao,et al.  A long-range correction scheme for generalized-gradient-approximation exchange functionals , 2001 .

[19]  Riedel,et al.  Origin of surface conductivity in diamond , 2000, Physical review letters.

[20]  A. A. Fokin,et al.  Functionalized nanodiamonds: triamantane and [121]tetramantane. , 2006, The Journal of organic chemistry.

[21]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[22]  V. Barone,et al.  Toward reliable density functional methods without adjustable parameters: The PBE0 model , 1999 .

[23]  P. Schreiner,et al.  Many density functional theory approaches fail to give reliable large hydrocarbon isomer energy differences. , 2006, Organic letters.

[24]  Jonathan M. Goodman,et al.  What Is the Smallest Saturated Acyclic Alkane that Cannot Be Made? , 2005, J. Chem. Inf. Model..

[25]  Wang,et al.  Generalized gradient approximation for the exchange-correlation hole of a many-electron system. , 1996, Physical review. B, Condensed matter.

[26]  L. Schäfer,et al.  Electron-diffraction study of hydrogen isotope effects in cyclohexane , 1976 .

[27]  A. J. Bruce,et al.  Infrared spectroscopic studies of partially deuterated ethanes and the r0, rz, and re structures , 1979 .

[28]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[29]  P. Schreiner,et al.  Hydroxy Derivatives of Diamantane, Triamantane, and [121]Tetramantane: Selective Preparation of Bis‐Apical Derivatives , 2007 .

[30]  Á. Rubio,et al.  Dielectric screening in two-dimensional insulators: Implications for excitonic and impurity states in graphane , 2011, 1104.3346.

[31]  H. Duddeck,et al.  Regioselective functionalisation of triamantane , 1978 .

[32]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[33]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[34]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[35]  N. Melosh,et al.  Origin of the monochromatic photoemission peak in diamondoid monolayers. , 2009, Nano letters.

[36]  A. Mazzanti,et al.  Conformational studies by dynamic NMR. 95. Rotation around the adamantyl-alkyl bond. Remote substituent effect on conformational equilibrium. , 2003, The Journal of organic chemistry.

[37]  P. Schreiner,et al.  Synthetic Routes to Aminotriamantanes,Topological Analogues of the Neuroprotector Memantine® , 2009 .

[38]  V. Turkowski,et al.  Possible High-Temperature Superconductivity in Multilayer Graphane: Can the Cuprates be Beaten? , 2011, 1102.4596.

[39]  P. Schreiner Relative energy computations with approximate density functional theory--a caveat! , 2007, Angewandte Chemie.

[40]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[41]  M. Ozawa,et al.  Unusually tight aggregation in detonation nanodiamond: Identification and disintegration , 2005 .

[42]  N. Melosh,et al.  Monochromatic Electron Photoemission from Diamondoid Monolayers , 2007, Science.

[43]  W. V. D. Wiel,et al.  TOPICAL REVIEW: Organic spintronics , 2007 .

[44]  I. Karle,et al.  The Crystal and Molecular Structure of Congressane, C14H20, by X-Ray Diffraction , 1965 .

[45]  S. Grimme Improved second-order Møller–Plesset perturbation theory by separate scaling of parallel- and antiparallel-spin pair correlation energies , 2003 .

[46]  A. A. Fokin,et al.  Reactivities of the prism-shaped diamondoids [1(2)3]tetramantane and [12312]hexamantane (cyclohexamantane). , 2009, Chemistry.

[47]  Peter G. Jones,et al.  [2+2] Cycloaddition Products of Tetradehydrodianthracene: Experimental and Theoretical Proof of Extraordinary Long CC Single Bonds , 1997 .

[48]  T. Takeda,et al.  Ultralong carbon-carbon bonds in dispirobis(10-methylacridan) derivatives with an acenaphthene, pyracene, or dihydropyracylene skeleton. , 2008, Chemistry.

[49]  S. Grimme,et al.  On the importance of the dispersion energy for the thermodynamic stability of molecules. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[50]  Shenggao Liu,et al.  Isolation and Structure of Higher Diamondoids, Nanometer-Sized Diamond Molecules , 2002, Science.

[51]  Axel D. Becke,et al.  Optimized density functionals from the extended G2 test set , 1998 .

[52]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[53]  P. Schreiner,et al.  Electrophilic and Oxidative Activation of the Central C−C Bond in [3.3.n]Propellanes: A Theoretical Study , 1998 .

[54]  Hans-Dieter Beckhaus,et al.  Towards an Understanding of the Carbon‐Carbon Bond , 1980 .

[55]  K. Peters,et al.  Thermolabile Hydrocarbons, XXVII. 2,3‐Di‐1‐adamantyl‐2,3‐dimethylbutane; Long Bonds and Low Thermal Stability , 1985 .

[56]  P. Roberts,et al.  anti-Tetramantane, a large diamondoid fragment , 1977 .

[57]  J. Clardy,et al.  Isolation and structural proof of the large diamond molecule, cyclohexamantane (C26H30). , 2003, Angewandte Chemie.

[58]  Steven E. Wheeler,et al.  A hierarchy of homodesmotic reactions for thermochemistry. , 2009, Journal of the American Chemical Society.

[59]  Clémence Corminboeuf,et al.  Systematic errors in computed alkane energies using B3LYP and other popular DFT functionals. , 2006, Organic letters.

[60]  K. Peters,et al.  Diamondoid hydrocarbons as indicators of natural oil cracking , 1999, Nature.

[61]  S. Grimme,et al.  When do interacting atoms form a chemical bond? Spectroscopic measurements and theoretical analyses of dideuteriophenanthrene. , 2009, Angewandte Chemie.

[62]  S. Grimme Density functional theory with London dispersion corrections , 2011 .

[63]  L. Bartell,et al.  Structures of the strained molecules hexamethylethane and 1,1,2,2-tetramethylethane by gas-phase electron diffraction , 1976 .

[64]  A. A. Fokin,et al.  Functionalized nanodiamonds part I. An experimental assessment of diamantane and computational predictions for higher diamondoids. , 2005, Chemistry.

[65]  S. Sanvito Organic electronics: memoirs of a spin. , 2007, Nature nanotechnology.

[66]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[67]  P. Schleyer,et al.  Diamantane. II. Preparation of derivatives of diamantane , 1974 .

[68]  H. Schaefer,et al.  Problematic Energy Differences between Cumulenes and Poly-ynes: Does This Point to a Systematic Improvement of Density Functional Theory? , 2002 .

[69]  A. A. Fokin,et al.  Selective Preparation of Diamondoid Fluorides[1] , 2009 .

[70]  R. Hoffmann,et al.  Graphane sheets and crystals under pressure , 2011, Proceedings of the National Academy of Sciences.

[71]  Patrick Norman,et al.  C6 dipole-dipole dispersion coefficients for the n-alkanes : Test of an additivity procedure , 2004 .

[72]  Bernhard Metz,et al.  Breakdown of Bond Length-Bond Strength Correlation: A Case Study This work was supported by Deutsche Forschungsgemeinschaft and by Fonds der Chemischen Industrie. , 2000, Angewandte Chemie.

[73]  B. Kahr,et al.  Length of the ethane bond in hexaphenylethane and its derivatives , 1986 .

[74]  Donald G Truhlar,et al.  Density functionals with broad applicability in chemistry. , 2008, Accounts of chemical research.

[75]  C. Rüchardt,et al.  Thermolabile kohlenwasserstoffe. XXVI. Bildungsenthalpie von 1,1,2,2-tetra-tert-butylethan☆ , 1984 .

[76]  K. Baldridge,et al.  The Nature of the Long Bond in 3,8-Dichloro-1,1,2,2-tetraphenylcyclobuta[b]naphthene , 1998 .

[77]  P. Hyldgaard,et al.  Stacking and band structure of van der Waals bonded graphane multilayers , 2010, 1010.2925.

[78]  Paul von Ragué Schleyer,et al.  Critical evaluation of molecular mechanics , 1973 .

[79]  A. A. Fokin,et al.  Diamonds are a chemist's best friend: diamondoid chemistry beyond adamantane. , 2008, Angewandte Chemie.

[80]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.

[81]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[82]  L. Bartell,et al.  ELECTRON DIFFRACTION STUDY OF THE STRUCTURES OF ETHANE AND DEUTEROETHANE , 1965 .

[83]  P. Schreiner,et al.  Synthesis of higher diamondoids and implications for their formation in petroleum. , 2010, Angewandte Chemie.

[84]  H. Schaefer,et al.  Tetraphenyldihydrocyclobutaarenes—what causes the extremely long 1.72 Å C–C single bond? , 1998 .

[85]  A. A. Fokin,et al.  Reactivity of [1(2,3)4]pentamantane (Td-pentamantane): a nanoscale model of diamond. , 2006, The Journal of organic chemistry.

[86]  C. Nordman,et al.  Phase transition and crystal structures of adamantane , 1965 .

[87]  R. Adams,et al.  The Stereochemistry of Diphenyls and Analogous Compounds. , 1933 .

[88]  M. Head‐Gordon,et al.  Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. , 2008, Physical chemistry chemical physics : PCCP.

[89]  A. A. Fokin,et al.  Band gap tuning in nanodiamonds: first principle computational studies , 2009 .

[90]  S. Grimme Seemingly simple stereoelectronic effects in alkane isomers and the implications for Kohn-Sham density functional theory. , 2006, Angewandte Chemie.

[91]  A. A. Fokin,et al.  Overcoming lability of extremely long alkane carbon–carbon bonds through dispersion forces , 2011, Nature.

[92]  N. Spielberg,et al.  Theory of the measurement of integrated intensities obtained with single-crystal counter diffractometers , 1966 .

[93]  A. A. Fokin,et al.  Functionalized nanodiamonds part 3: thiolation of tertiary/bridgehead alcohols. , 2006, Organic letters.

[94]  P. Schreiner,et al.  Steric crowding can stabilize a labile molecule: solving the hexaphenylethane riddle. , 2011, Angewandte Chemie.