A Structural Approach to Subset-Sum Problems
暂无分享,去创建一个
[1] P. Erdös. On a lemma of Littlewood and Offord , 1945 .
[2] Arie Bialostocki,et al. On the Erdös-Ginzburg-Ziv theorem and the Ramsey numbers for stars and matchings , 1992, Discret. Math..
[3] J. W. Silverstein,et al. Spectral Analysis of Large Dimensional Random Matrices , 2009 .
[4] P. Erdos,et al. Old and new problems and results in combinatorial number theory , 1980 .
[5] András Sárközy,et al. Combinatorial number theory , 1996 .
[6] Jean-Marc Deshouillers,et al. Quand seule la sous-somme vide est nulle modulo $p$ , 2007 .
[7] N. Hegyvári. On the representation of integers as sums of distinct terms from a fixed set , 2000 .
[8] Weidong Gao,et al. On additive bases , 1999 .
[9] E. Wigner. On the Distribution of the Roots of Certain Symmetric Matrices , 1958 .
[10] J. Littlewood,et al. On the Number of Real Roots of a Random Algebraic Equation , 1938 .
[11] Kenneth B. Huber. Department of Mathematics , 1894 .
[12] F. Gotze,et al. On the Circular Law , 2007, math/0702386.
[13] Neil J. Calkin. On the Number of Sum-Free Sets , 1990 .
[14] A. Ziv,et al. Theorem in the Additive Number Theory , 2022 .
[15] E. Lipkin. On representation of r-th powers by subset sums , 1989 .
[16] H. B. Mann,et al. An addition theorem for the elementary Abelian group of type (p, p) , 1986 .
[17] D. Kleitman. On a lemma of Littlewood and Offord on the distributions of linear combinations of vectors , 1970 .
[18] B. Green,et al. Freiman's theorem in an arbitrary abelian group , 2005, math/0505198.
[19] John E. Olson,et al. An addition theorem modulo p , 1968 .
[20] George E. Andrews,et al. Number theory , 1971, Bicycle or Unicycle?.
[21] E. Szemerédi,et al. Finite and infinite arithmetic progressions in sumsets , 2006 .
[22] Tomasz Łuczak,et al. On the maximal density of sum-free sets , 2000 .
[23] J. A. Dias da Silva,et al. Cyclic Spaces for Grassmann Derivatives and Additive Theory , 1994 .
[24] Terence Tao,et al. Additive combinatorics , 2007, Cambridge studies in advanced mathematics.
[25] N. ALON,et al. Subset Sums , 1987 .
[26] Zoltán Füredi,et al. Solution of the Littlewood-Offord problem in high dimensions , 1988 .
[27] András Sárközy,et al. Finite addition theorems, I , 1989 .
[28] John E. Olson,et al. Sums of sets of group elements , 1975 .
[29] E. Szemerédi,et al. Long arithmetic progressions in sumsets: Thresholds and bounds , 2005, math/0507539.
[30] G. Halász. Estimates for the concentration function of combinatorial number theory and probability , 1977 .
[31] Henry B. Mann,et al. Combinatorial Problems in Finite Abelian Groups , 1973 .
[32] Oleg Golberg. Combinatorial Nullstellensatz , 2007 .
[33] Noga Alon,et al. On sums of subsets of a set of integers , 1988, Comb..
[34] Endre Szemerédi,et al. On a conjecture of Erdös and Heilbronn , 1970 .
[35] ACTA ARITHMETICA , 2022 .
[36] Richard P. Stanley,et al. Weyl Groups, the Hard Lefschetz Theorem, and the Sperner Property , 1980, SIAM J. Algebraic Discret. Methods.
[37] Weidong Gao,et al. Covering a Finite Abelian Group by Subset Sums , 2003, Comb..
[38] J. Deshouillers. A lower bound concerning subset sums which do not cover all the residues modulo $p$. , 2005 .
[39] Paul Erdös. Some Problems and Results on Combinatorial Number Theory , 1989 .
[40] Jeong Hyun Kang,et al. Combinatorial Number Theory , 2007 .
[41] G. Freiman,et al. When subset-sums do not cover all the residues modulo p , 2004 .
[42] T. Tao,et al. RANDOM MATRICES: THE CIRCULAR LAW , 2007, 0708.2895.
[43] Additive Combinatorics: Contents , 2006 .
[44] Gregory Freiman. New analytical results in subset-sum problem , 1993, Discret. Math..
[45] Jeffrey C. Lagarias,et al. On the Tightest Packing of Sums of Vectors , 1983, Eur. J. Comb..
[46] Yahya Ould Hamidoune,et al. On zero-free subset sums , 1996 .
[47] E. Szemerédi,et al. Long Arithmetic Progressions in Sum‐Sets and the Number x‐Sum‐Free Sets , 2005 .
[48] Melvyn B. Nathanson,et al. Elementary Methods in Number Theory , 1999 .
[49] András Sárközy. Fine Addition Theorems, II , 1994 .
[50] G. Diderrich,et al. An addition theorem for Abelian groups of order pq , 1975 .
[51] Richard Mollin,et al. On the Number of Sets of Integers With Various Properties , 1990 .
[52] Ö. J. Rödseth. On the addition of residue classes modp , 1996 .
[53] Ben Green. The Cameron–Erdős Conjecture , 2003 .
[54] Van H. Vu,et al. Classification theorems for sumsets modulo a prime , 2009, J. Comb. Theory, Ser. A.
[55] Paul Erdös,et al. On the addition of residue classes mod p , 1964 .
[56] G. Freiman. Foundations of a Structural Theory of Set Addition , 2007 .
[57] W D Gao,et al. On the structure ofp-zero-sum free sequences and its application to a variant of Erdös-Ginzburg-Ziv theorem , 2005 .
[58] Van H. Vu. Structure of large incomplete sets in abelian groups , 2010, Comb..
[59] Alexander Tikhomirov,et al. The circular law for random matrices , 2007, 0709.3995.
[60] Wang Zhou,et al. Circular law, extreme singular values and potential theory , 2010, J. Multivar. Anal..
[61] J. Folkman. On the Representation of Integers as Sums of Distinct Terms from a Fixed Sequence , 1966, Canadian Journal of Mathematics.
[62] Emil Grosswald,et al. The Theory of Partitions , 1984 .
[63] T. Tao,et al. Inverse Littlewood-Offord theorems and the condition number of random discrete matrices , 2005, math/0511215.
[64] András Sárközy,et al. Über ein Problem von Erdös und Moser , 1965 .
[65] N. Alon. Independent sets in regular graphs and sum-free subsets of finite groups , 1991 .