A Structural Approach to Subset-Sum Problems

We discuss a structural approach to subset-sum problems in additive combinatorics. The core of this approach are Freiman-type structural theorems, many of which will be presented through the paper. These results have applications in various areas, such as number theory, combinatorics and mathematical physics.

[1]  P. Erdös On a lemma of Littlewood and Offord , 1945 .

[2]  Arie Bialostocki,et al.  On the Erdös-Ginzburg-Ziv theorem and the Ramsey numbers for stars and matchings , 1992, Discret. Math..

[3]  J. W. Silverstein,et al.  Spectral Analysis of Large Dimensional Random Matrices , 2009 .

[4]  P. Erdos,et al.  Old and new problems and results in combinatorial number theory , 1980 .

[5]  András Sárközy,et al.  Combinatorial number theory , 1996 .

[6]  Jean-Marc Deshouillers,et al.  Quand seule la sous-somme vide est nulle modulo $p$ , 2007 .

[7]  N. Hegyvári On the representation of integers as sums of distinct terms from a fixed set , 2000 .

[8]  Weidong Gao,et al.  On additive bases , 1999 .

[9]  E. Wigner On the Distribution of the Roots of Certain Symmetric Matrices , 1958 .

[10]  J. Littlewood,et al.  On the Number of Real Roots of a Random Algebraic Equation , 1938 .

[11]  Kenneth B. Huber Department of Mathematics , 1894 .

[12]  F. Gotze,et al.  On the Circular Law , 2007, math/0702386.

[13]  Neil J. Calkin On the Number of Sum-Free Sets , 1990 .

[14]  A. Ziv,et al.  Theorem in the Additive Number Theory , 2022 .

[15]  E. Lipkin On representation of r-th powers by subset sums , 1989 .

[16]  H. B. Mann,et al.  An addition theorem for the elementary Abelian group of type (p, p) , 1986 .

[17]  D. Kleitman On a lemma of Littlewood and Offord on the distributions of linear combinations of vectors , 1970 .

[18]  B. Green,et al.  Freiman's theorem in an arbitrary abelian group , 2005, math/0505198.

[19]  John E. Olson,et al.  An addition theorem modulo p , 1968 .

[20]  George E. Andrews,et al.  Number theory , 1971, Bicycle or Unicycle?.

[21]  E. Szemerédi,et al.  Finite and infinite arithmetic progressions in sumsets , 2006 .

[22]  Tomasz Łuczak,et al.  On the maximal density of sum-free sets , 2000 .

[23]  J. A. Dias da Silva,et al.  Cyclic Spaces for Grassmann Derivatives and Additive Theory , 1994 .

[24]  Terence Tao,et al.  Additive combinatorics , 2007, Cambridge studies in advanced mathematics.

[25]  N. ALON,et al.  Subset Sums , 1987 .

[26]  Zoltán Füredi,et al.  Solution of the Littlewood-Offord problem in high dimensions , 1988 .

[27]  András Sárközy,et al.  Finite addition theorems, I , 1989 .

[28]  John E. Olson,et al.  Sums of sets of group elements , 1975 .

[29]  E. Szemerédi,et al.  Long arithmetic progressions in sumsets: Thresholds and bounds , 2005, math/0507539.

[30]  G. Halász Estimates for the concentration function of combinatorial number theory and probability , 1977 .

[31]  Henry B. Mann,et al.  Combinatorial Problems in Finite Abelian Groups , 1973 .

[32]  Oleg Golberg Combinatorial Nullstellensatz , 2007 .

[33]  Noga Alon,et al.  On sums of subsets of a set of integers , 1988, Comb..

[34]  Endre Szemerédi,et al.  On a conjecture of Erdös and Heilbronn , 1970 .

[35]  ACTA ARITHMETICA , 2022 .

[36]  Richard P. Stanley,et al.  Weyl Groups, the Hard Lefschetz Theorem, and the Sperner Property , 1980, SIAM J. Algebraic Discret. Methods.

[37]  Weidong Gao,et al.  Covering a Finite Abelian Group by Subset Sums , 2003, Comb..

[38]  J. Deshouillers A lower bound concerning subset sums which do not cover all the residues modulo $p$. , 2005 .

[39]  Paul Erdös Some Problems and Results on Combinatorial Number Theory , 1989 .

[40]  Jeong Hyun Kang,et al.  Combinatorial Number Theory , 2007 .

[41]  G. Freiman,et al.  When subset-sums do not cover all the residues modulo p , 2004 .

[42]  T. Tao,et al.  RANDOM MATRICES: THE CIRCULAR LAW , 2007, 0708.2895.

[43]  Additive Combinatorics: Contents , 2006 .

[44]  Gregory Freiman New analytical results in subset-sum problem , 1993, Discret. Math..

[45]  Jeffrey C. Lagarias,et al.  On the Tightest Packing of Sums of Vectors , 1983, Eur. J. Comb..

[46]  Yahya Ould Hamidoune,et al.  On zero-free subset sums , 1996 .

[47]  E. Szemerédi,et al.  Long Arithmetic Progressions in Sum‐Sets and the Number x‐Sum‐Free Sets , 2005 .

[48]  Melvyn B. Nathanson,et al.  Elementary Methods in Number Theory , 1999 .

[49]  András Sárközy Fine Addition Theorems, II , 1994 .

[50]  G. Diderrich,et al.  An addition theorem for Abelian groups of order pq , 1975 .

[51]  Richard Mollin,et al.  On the Number of Sets of Integers With Various Properties , 1990 .

[52]  Ö. J. Rödseth On the addition of residue classes modp , 1996 .

[53]  Ben Green The Cameron–Erdős Conjecture , 2003 .

[54]  Van H. Vu,et al.  Classification theorems for sumsets modulo a prime , 2009, J. Comb. Theory, Ser. A.

[55]  Paul Erdös,et al.  On the addition of residue classes mod p , 1964 .

[56]  G. Freiman Foundations of a Structural Theory of Set Addition , 2007 .

[57]  W D Gao,et al.  On the structure ofp-zero-sum free sequences and its application to a variant of Erdös-Ginzburg-Ziv theorem , 2005 .

[58]  Van H. Vu Structure of large incomplete sets in abelian groups , 2010, Comb..

[59]  Alexander Tikhomirov,et al.  The circular law for random matrices , 2007, 0709.3995.

[60]  Wang Zhou,et al.  Circular law, extreme singular values and potential theory , 2010, J. Multivar. Anal..

[61]  J. Folkman On the Representation of Integers as Sums of Distinct Terms from a Fixed Sequence , 1966, Canadian Journal of Mathematics.

[62]  Emil Grosswald,et al.  The Theory of Partitions , 1984 .

[63]  T. Tao,et al.  Inverse Littlewood-Offord theorems and the condition number of random discrete matrices , 2005, math/0511215.

[64]  András Sárközy,et al.  Über ein Problem von Erdös und Moser , 1965 .

[65]  N. Alon Independent sets in regular graphs and sum-free subsets of finite groups , 1991 .