Refined structure of elongation factor EF-Tu from Escherichia coli.

[1]  F. Richards,et al.  The Use of the Gradient Tube for the Determination of Crystal Densities1a , 1952 .

[2]  C. E. Klopfenstein,et al.  A computer controlled film scanner for X-ray crystallography , 1972 .

[3]  T. Blumenthal,et al.  Bacteriophage Q replicase contains the protein biosynthesis elongation factors EF Tu and EF Ts. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[4]  K. Arai,et al.  Interaction of guanosine 5'-diphosphate, 2'-(or 3'-) diphosphate(ppGpp) with elongation factors from E. coli. , 1972, Biochemical and biophysical research communications.

[5]  A. Rich,et al.  Preliminary X-ray Analysis of the Crystalline Complex between Poypeptide Chain Elongation Factor, Tu, and GDP , 1973, Nature.

[6]  G. Schulz,et al.  Crystals of partially trypsin-digested elongation factor Tu. , 1976, Journal of molecular biology.

[7]  G. Bricogne,et al.  Methods and programs for direct‐space exploitation of geometric redundancies , 1976 .

[8]  G. Schulz,et al.  Polymorphism in crystallin elongation factor Tu-GDP from Escherichia coli. , 1976, Journal of molecular biology.

[9]  F. Jurnak,et al.  Preliminary x-ray diffraction data for tetragonal crystals of trypsinized Escherichia coli elongation factor. , 1977, Journal of molecular biology.

[10]  M. Cohn,et al.  Magnetic resonance studies of the manganese guanosine di- and triphosphate complexes with elongation factor Tu. , 1977, The Journal of biological chemistry.

[11]  W. Kabsch,et al.  Low resolution structure of partially trypsin-degraded polypeptide elongation factor, EF-TU, from Escherichia coli. , 1977, Journal of molecular biology.

[12]  W. Kabsch,et al.  Crystals of a large tryptic peptide (fragment A) of elongation factor EF‐Tu from Escherichia coli , 1977, FEBS letters.

[13]  H. Weissbach,et al.  6 – Factors Involved in the Transfer of Aminoacyl-tRNA to the Ribosome , 1977 .

[14]  K Morikawa,et al.  High resolution x-ray crystallographic analysis of a modified form of the elongation factor Tu: guanosine diphosphate complex. , 1978, Journal of molecular biology.

[15]  B. D. Beck,et al.  Polymerization of the bacterial elongation factor for protein synthesis, EF-Tu. , 1979, European journal of biochemistry.

[16]  F. Jurnak,et al.  Biochemical and structural studies of the tetragonal crystalline modification of the Escherichia coli elongation factor Tu. , 1980, The Journal of biological chemistry.

[17]  C. Brändén,et al.  Relation between structure and function of α/β–protejns , 1980, Quarterly Reviews of Biophysics.

[18]  B. Clark,et al.  The complete amino-acid sequence of elongation factor Tu from Escherichia coli. , 1980, European journal of biochemistry.

[19]  W. Kabsch,et al.  X‐ray determination of the GDP‐binding site of Escherichia coli elongation factor Tu by substitution with ppGpp , 1981, FEBS letters.

[20]  EPR studies of the Mn(II) complex with elongation factor Tu and GDP Identification of oxygen ligands to Mn(II) by observation of 17O superhyperfine coupling. , 1981, The Journal of biological chemistry.

[21]  B. Clark,et al.  Structural features of the GDP binding site of elongation factor Tu from Escherichia coli as determined by X‐ray diffraction , 1981, FEBS letters.

[22]  J. E. Mellema,et al.  Characterization of regular polymerization products of elongation factor EF-Tu from Escherichia coli by electron microscopy and image processing. , 1981, Journal of molecular biology.

[23]  H. Kalbitzer,et al.  The structure of the EF-Tu . GDP . Me2+ complex. , 1982, European journal of biochemistry.

[24]  J. Stastna,et al.  Isolation and characterization of Streptomyces aureofaciens protein-synthesis elongation factor Tu in an aggregated state. , 1982, European journal of biochemistry.

[25]  W. Kabsch,et al.  Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features , 1983, Biopolymers.

[26]  L. Bosch,et al.  The elongation factor EF-Tu and its two encoding genes. , 1983, Progress in nucleic acid research and molecular biology.

[27]  R. Goody,et al.  Stereochemistry of the elongation factor Tu X GTP complex. , 1983, European journal of biochemistry.

[28]  S. Hughes Are guanine nucleotide binding proteins a distinct class of regulatory proteins? , 1983, FEBS letters.

[29]  Hall Kr Regional homology in GTP-binding proto-oncogene products and elongation factors , 1983 .

[30]  R. Leberman,et al.  Homologies in the primary structure of GTP‐binding proteins: the nucleotide‐binding site of EF‐Tu and p21. , 1984, The EMBO journal.

[31]  P. Artymiuk,et al.  The use of phase combination in crystallographic refinement: the choice of amplitude coefficients in combined syntheses , 1984 .

[32]  B. Meloun,et al.  Histidine residues in elongation factor EF-tu from Escherichia coli protected by aminoacyl-tRNA against photo-oxidation. , 1984, European journal of biochemistry.

[33]  B. Clark,et al.  Specific alterations of the EF‐Tu polypeptide chain considered in the light of its three‐dimensional structure. , 1984, The EMBO journal.

[34]  R. Wierenga,et al.  INTERACTION OF PYROPHOSPHATE MOIETIES WITH ALPHA-HELIXES IN DINUCLEOTIDE BINDING-PROTEINS , 1985 .

[35]  B. Clark,et al.  Structural details of the binding of guanosine diphosphate to elongation factor Tu from E. coli as studied by X‐ray crystallography. , 1985, The EMBO journal.

[36]  Jones Ta,et al.  Diffraction methods for biological macromolecules. Interactive computer graphics: FRODO. , 1985, Methods in enzymology.

[37]  W. Möller,et al.  Phosphate‐binding sequences in nucleotide‐binding proteins , 1985, FEBS letters.

[38]  B. C. Wang Resolution of phase ambiguity in macromolecular crystallography. , 1985, Methods in enzymology.

[39]  B. Clark,et al.  A model for the tertiary structure of p21, the product of the ras oncogene. , 1985, Science.

[40]  G A Petsko,et al.  Aromatic-aromatic interaction: a mechanism of protein structure stabilization. , 1985, Science.

[41]  F. Jurnak Structure of the GDP domain of EF-Tu and location of the amino acids homologous to ras oncogene proteins. , 1985, Science.

[42]  R. Thompson,et al.  The reaction of ribosomes with elongation factor Tu.GTP complexes. Aminoacyl-tRNA-independent reactions in the elongation cycle determine the accuracy of protein synthesis. , 1986, The Journal of biological chemistry.

[43]  GTPase center of elongation factor Tu is activated by occupation of the second tRNA binding site. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[44]  L. Bosch,et al.  Methylation in vivo of elongation factor EF-Tu at lysine-56 decreases the rate of tRNA-dependent GTP hydrolysis. , 1986, European journal of biochemistry.

[45]  R. Read Improved Fourier Coefficients for Maps Using Phases from Partial Structures with Errors , 1986 .

[46]  L. Stryer,et al.  G proteins: a family of signal transducers. , 1986, Annual review of cell biology.

[47]  Y. Hwang,et al.  A mutation that alters the nucleotide specificity of elongation factor Tu, a GTP regulatory protein. , 1987, The Journal of biological chemistry.

[48]  A. Leslie,et al.  A reciprocal-space method for calculating a molecular envelope using the algorithm of B.C. Wang , 1987 .

[49]  W. Merrick,et al.  GTP-binding domain: three consensus sequence elements with distinct spacing. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[50]  M. Karplus,et al.  Crystallographic R Factor Refinement by Molecular Dynamics , 1987, Science.

[51]  S H Kim,et al.  Three-dimensional structure of an oncogene protein: catalytic domain of human c-H-ras p21. , 1988, Science.

[52]  Crystallization and preliminary X‐ray diffraction studies of intact EF‐Tu from Thermus aquaticus YT‐1 , 1988, FEBS letters.

[53]  J B Gibbs,et al.  Purification of ras GTPase activating protein from bovine brain. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[54]  E. Jacquet,et al.  Structure‐function relationships in the GTP binding domain of EF‐Tu: mutation of Val20, the residue homologous to position 12 in p21. , 1988, The EMBO journal.

[55]  M. Peter,et al.  Affinity labeling of the GDP/GTP binding site in Thermus thermophilus elongation factor Tu. , 1988, Biochemistry.

[56]  Y. Shirakihara,et al.  Crystal structure of the complex of phosphofructokinase from Escherichia coli with its reaction products. , 1988, Journal of molecular biology.

[57]  M. Karplus,et al.  Crystallographic refinement by simulated annealing: application to crambin , 1989 .

[58]  J. Nyborg,et al.  New Structural Data on Elongation Factor-Tu:Gdp Based on X-Ray Crystallography , 1989 .

[59]  W. Kabsch,et al.  Structure of the guanine-nucleotide-binding domain of the Ha-ras oncogene product p21 in the triphosphate conformation , 1989, Nature.

[60]  J. Ebel,et al.  Crosslinking of elongation factor Tu to tRNAPhe by trans‐diamminedichloroplatinum (II) Characterization of two crosslinking sites on EF‐Tu , 1989, FEBS letters.

[61]  B. Clark,et al.  Homologies in the Structures of G-Binding Proteins: An Analysis Based on Elongation Factor EF-TU , 1989, Bio/Technology.

[62]  Mutagenesis of bacterial elongation factor Tu at lysine 136. A conserved amino acid in GTP regulatory proteins. , 1989, The Journal of biological chemistry.

[63]  M. Yoder,et al.  Progress on the Three-Dimensional Structural Determination of Trypsin-Modified EF-TU-GDP , 1989 .

[64]  G. Schneider,et al.  Crystal structure of the active site of ribulose-bisphosphate carboxylase , 1989, Nature.

[65]  B. Clark,et al.  Structure-function relationships of elongation factor Tu. Isolation and activity of the guanine-nucleotide-binding domain. , 1989, European journal of biochemistry.

[66]  S. Kim,et al.  Structure of ras proteins. , 1989, Science.

[67]  M. Innis,et al.  Site-directed mutagenesis of the GDP binding domain of bacterial elongation factor Tu. , 1989, Archives of biochemistry and biophysics.

[68]  E. Jacquet,et al.  Substitution of Val20 by Gly in elongation factor Tu. Effects on the interaction with elongation factors Ts, aminoacyl-tRNA and ribosomes. , 1989, European journal of biochemistry.

[69]  H. Toledo,et al.  Methylation of elongation factor EF‐Tu affects the rate of trypsin degradation and tRNA‐dependent GTP hydrolysis , 1989 .

[70]  G. Schulz,et al.  Three-dimensional structure of the complex of guanylate kinase from yeast with its substrate GMP. , 1990, Journal of molecular biology.

[71]  T. Jones,et al.  Between objectivity and subjectivity , 1990, Nature.

[72]  S. Kim,et al.  Crystal structure of an active form of RAS protein, a complex of a GTP analog and the HRAS p21 catalytic domain. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[73]  B. Clark,et al.  Structural determination of the functional sites of E. coli elongation factor Tu. , 1990, Biochimica et biophysica acta.

[74]  W. Kabsch,et al.  Refined crystal structure of the triphosphate conformation of H‐ras p21 at 1.35 A resolution: implications for the mechanism of GTP hydrolysis. , 1990, The EMBO journal.

[75]  F. Jurnak,et al.  Three-dimensional models of the GDP and GTP forms of the guanine nucleotide domain of Escherichia coli elongation factor Tu. , 1990, Biochimica et biophysica acta.

[76]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.