Phonon Influence on Bulk Photovoltaic Effect in the Ferroelectric Semiconductor GeTe.

The shift current (SHC) has been accepted as the primary mechanism of the bulk photovoltaic effect (BPVE) in ferroelectrics, which is much different from the typical p-n junction-based photovoltaic mechanism in heterogeneous materials. In the present work, we use first-principles calculations to investigate the SHC response in the ferroelectric semiconductor GeTe, which is found possess a large SHC response due to its intrinsic narrow band gap and high covalency. We explore the changes of SHC response induced by phonon vibrations, and analytically fit current versus vibrational amplitude to reveal the quantitative relationships between vibrations and the SHC response. Furthermore, we demonstrate the temperature dependence of the SHC response by averaging the phonon vibration influence in the Brillouin zone. Our investigation provides an explicit experimental prediction about the temperature dependence of BPVE and can be extended to other classes of noncentrosymmetric materials.

[1]  M. Alexe,et al.  Bulk photovoltaic effect in monodomain BiFeO3 thin films , 2017 .

[2]  T. Morimoto,et al.  Quantitative relationship between polarization differences and the zone-averaged shift photocurrent , 2016, 1701.00172.

[3]  T. Morimoto,et al.  Large Bulk Photovoltaic Effect and Spontaneous Polarization of Single-Layer Monochalcogenides. , 2016, Physical review letters.

[4]  Jinsong Huang,et al.  Physical aspects of ferroelectric semiconductors for photovoltaic solar energy conversion , 2016 .

[5]  Alessia Polemi,et al.  Erratum: Power conversion efficiency exceeding the Shockley–Queisser limit in a ferroelectric insulator , 2016, Nature Photonics.

[6]  Danyang Wang,et al.  Enhanced Photovoltaic Effect in Fe‐Doped (Bi, Na) TiO3‐BaTiO3 Ferroelectric Ceramics , 2016 .

[7]  M. Lira-Cantú,et al.  Above‐Bandgap Photovoltages in Antiferroelectrics , 2016, Advanced materials.

[8]  C. Bark,et al.  Large enhancement of the photovoltaic effect in ferroelectric complex oxides through bandgap reduction , 2016, Scientific Reports.

[9]  M. Kawasaki,et al.  Spontaneous Polarization and Bulk Photovoltaic Effect Driven by Polar Discontinuity in LaFeO_{3}/SrTiO_{3} Heterojunctions. , 2016, Physical review letters.

[10]  Ju Li,et al.  Ruddlesden–Popper perovskite sulfides A3B2S7: A new family of ferroelectric photovoltaic materials for the visible spectrum , 2016 .

[11]  F. Zheng,et al.  Substantial bulk photovoltaic effect enhancement via nanolayering , 2016, Nature Communications.

[12]  H. Ebert,et al.  Spin mapping of surface and bulk Rashba states in ferroelectric α -GeTe(111) films , 2015, 1512.01363.

[13]  L. Tan,et al.  Enhancement of the Bulk Photovoltaic Effect in Topological Insulators. , 2015, Physical review letters.

[14]  Joel E Moore,et al.  Design principles for shift current photovoltaics , 2015, Nature Communications.

[15]  Fenggong Wang,et al.  First-principles calculation of the bulk photovoltaic effect in KNbO 3 and (K,Ba)(Ni,Nb) O 3 − δ , 2015, 1503.00684.

[16]  Aron Walsh,et al.  Ferroelectric materials for solar energy conversion: photoferroics revisited , 2014, 1412.6929.

[17]  Wei Huang,et al.  Bandgap tuning of multiferroic oxide solar cells , 2014, Nature Photonics.

[18]  A. L. Tolstikhina,et al.  Giant bulk photovoltaic effect in thin ferroelectricBaTiO3films , 2014 .

[19]  F. Zheng,et al.  First-principles calculation of the bulk photovoltaic effect in the polar compounds LiAsS2, LiAsSe2, and NaAsSe2. , 2014, The Journal of chemical physics.

[20]  K. Parlinski,et al.  Soft-phonon mediated structural phase transition in GeTe , 2014 .

[21]  T. Elsaesser,et al.  High-field terahertz bulk photovoltaic effect in lithium niobate. , 2014, Physical review letters.

[22]  Fan Zheng,et al.  First-principles materials design of high-performing bulk photovoltaics with the LiNbO$_3$ structure , 2014, 1508.05874.

[23]  Marin Alexe,et al.  Role of domain walls in the abnormal photovoltaic effect in BiFeO3 , 2013, Nature Communications.

[24]  Liyan Wu,et al.  Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials , 2013, Nature.

[25]  P. Barone,et al.  Electric Control of the Giant Rashba Effect in Bulk GeTe , 2013, Advanced materials.

[26]  Fan Zheng,et al.  First-principles calculation of the bulk photovoltaic effect in bismuth ferrite. , 2012, Physical review letters.

[27]  A. Alivisatos,et al.  Ferroelectric order in individual nanometre-scale crystals. , 2012, Nature materials.

[28]  S. Young,et al.  First principles calculation of the shift current photovoltaic effect in ferroelectrics. , 2012, Physical review letters.

[29]  Klaus Sokolowski-Tinten,et al.  Ultrafast photovoltaic response in ferroelectric nanolayers. , 2012, Physical review letters.

[30]  Kui Yao,et al.  Evidence of bulk photovoltaic effect and large tensor coefficient in ferroelectric BiFeO 3 thin films , 2011 .

[31]  Ramamoorthy Ramesh,et al.  Efficient photovoltaic current generation at ferroelectric domain walls. , 2011, Physical review letters.

[32]  M. Alexe,et al.  Tip-enhanced photovoltaic effects in bismuth ferrite , 2011 .

[33]  R. Coronel,et al.  The Driving Force of the Na+/Ca2+-Exchanger during Metabolic Inhibition , 2011, Front. Physio..

[34]  A. Rappe,et al.  Post density functional theoretical studies of highly polar semiconductive Pb(Ti1-xNix)O3-x solid solutions: Effects of cation arrangement on band gap , 2011, 1102.2449.

[35]  L. Pintilie,et al.  About the complex relation between short-circuit photocurrent, imprint and polarization in ferroelectric thin films , 2010 .

[36]  P Shafer,et al.  Above-bandgap voltages from ferroelectric photovoltaic devices. , 2010, Nature nanotechnology.

[37]  Tae-Yon Lee,et al.  Optical properties of pseudobinary GeTe, Ge 2 Sb 2 Te 5 , GeSb 2 Te 4 , GeSb 4 Te 7 , and Sb 2 Te 3 from ellipsometry and density functional theory , 2009 .

[38]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[39]  S.-W. Cheong,et al.  Switchable Ferroelectric Diode and Photovoltaic Effect in BiFeO3 , 2009, Science.

[40]  A. Rappe,et al.  New highly polar semiconductor ferroelectrics through d8 cation-O vacancy substitution into PbTiO3: a theoretical study. , 2008, Journal of the American Chemical Society.

[41]  D. Suh,et al.  Optical properties of (GeTe, Sb2Te3) pseudobinary thin films studied with spectroscopic ellipsometry , 2008 .

[42]  X. Gonze,et al.  Dynamical, dielectric, and elastic properties of GeTe investigated with first-principles density fun , 2008, 0805.0491.

[43]  L. Kleinman,et al.  Density functional study of the effect of pressure on the ferroelectricGeTe , 2006 .

[44]  V. Fridkin,et al.  Bulk photovoltaic effect in noncentrosymmetric crystals , 2001 .

[45]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[46]  J. Sipe,et al.  Second-order optical response in semiconductors , 2000 .

[47]  A. Rappe,et al.  Designed nonlocal pseudopotentials for enhanced transferability , 1997, cond-mat/9711163.

[48]  Kazuhiro Nonaka,et al.  Bulk Photovoltaic Effect in Reduced/Oxidized Lead Lanthanum Titanate Zirconate Ceramics , 1995 .

[49]  Karlsruhe,et al.  Theory of the bulk photovoltaic effect in pure crystals , 1981 .

[50]  V. Fridkin,et al.  The photoinduced Rayleigh scattering in BaTiO3 crystals showing the bulk photovoltaic effect , 1977 .

[51]  Wolfgang Ruppel,et al.  Bulk photovoltaic effect in BaTiO3 , 1975 .

[52]  Alastair M. Glass,et al.  High‐voltage bulk photovoltaic effect and the photorefractive process in LiNbO3 , 1974 .

[53]  F. S. Chen,et al.  Optically Induced Change of Refractive Indices in LiNbO3 and LiTaO3 , 1969 .

[54]  A. G. Chynoweth,et al.  Surface Space-Charge Layers in Barium Titanate , 1956 .

[55]  G. Dresselhaus Spin-Orbit Coupling Effects in Zinc Blende Structures , 1955 .

[56]  B. Sturman,et al.  REVIEWS OF TOPICAL PROBLEMS: The photogalvanic effect in media lacking a center of symmetry , 1980 .