Distributionally Robust Optimization: A Review

The concepts of risk-aversion, chance-constrained optimization, and robust optimization have developed significantly over the last decade. Statistical learning community has also witnessed a rapid theoretical and applied growth by relying on these concepts. A modeling framework, called distributionally robust optimization (DRO), has recently received significant attention in both the operations research and statistical learning communities. This paper surveys main concepts and contributions to DRO, and its relationships with robust optimization, risk-aversion, chance-constrained optimization, and function regularization.

[1]  T. Rutherford,et al.  Nonlinear Programming , 2021, Mathematical Programming Methods for Geographers and Planners.

[2]  P.R. Srivastava,et al.  On Data-Driven Prescriptive Analytics with Side Information: A Regularized Nadaraya-Watson Approach , 2021, 2110.04855.

[3]  N. Nathani,et al.  Foundations of Machine Learning , 2021, Introduction to AI Techniques for Renewable Energy Systems.

[4]  Expected Utility , 2021, Game Theory Basics.

[5]  A. Shapiro Tutorial on risk neutral, distributionally robust and risk averse multistage stochastic programming , 2021, Eur. J. Oper. Res..

[6]  Miguel Lejeune,et al.  Data-Driven Optimization of Reward-Risk Ratio Measures , 2020, INFORMS J. Comput..

[7]  Dick den Hertog,et al.  Reducing Conservatism in Robust Optimization , 2020, INFORMS J. Comput..

[8]  Xiaolan Xie,et al.  Branch and Price for Chance-Constrained Bin Packing , 2020, INFORMS J. Comput..

[9]  Tito Homem-de-Mello,et al.  Controlling risk and demand ambiguity in newsvendor models , 2019, Eur. J. Oper. Res..

[10]  Sanjay Mehrotra,et al.  On solving two-stage distributionally robust disjunctive programs with a general ambiguity set , 2019, Eur. J. Oper. Res..

[11]  Melvyn Sim,et al.  Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets , 2019, Oper. Res..

[12]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[13]  Maarten H. van der Vlerk,et al.  An approximation framework for two-stage ambiguous stochastic integer programs under mean-MAD information , 2019, Eur. J. Oper. Res..

[14]  Karthik Natarajan,et al.  Distributionally robust project crashing with partial or no correlation information , 2019, Networks.

[15]  Melvyn Sim,et al.  Adaptive Distributionally Robust Optimization , 2019, Manag. Sci..

[16]  Insoon Yang,et al.  Wasserstein Distributionally Robust Stochastic Control: A Data-Driven Approach , 2018, IEEE Transactions on Automatic Control.

[17]  Georg Ch. Pflug,et al.  A Review on Ambiguity in Stochastic Portfolio Optimization , 2018 .

[18]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[19]  Xinhua Zhang,et al.  Distributionally Robust Graphical Models , 2018, NeurIPS.

[20]  Chao Shang,et al.  Robust Model Predictive Control of Irrigation Systems With Active Uncertainty Learning and Data Analytics , 2018, IEEE Transactions on Control Systems Technology.

[21]  Erick Delage,et al.  Generalization bounds for regularized portfolio selection with market side information , 2018, INFOR Inf. Syst. Oper. Res..

[22]  Sanjay Mehrotra,et al.  Decomposition Algorithms for Two-Stage Distributionally Robust Mixed Binary Programs , 2018, SIAM J. Optim..

[23]  Ruiwei Jiang,et al.  Risk-Averse Two-Stage Stochastic Program with Distributional Ambiguity , 2018, Oper. Res..

[24]  Melvyn Sim,et al.  Adjustable Robust Optimization via Fourier-Motzkin Elimination , 2018, Oper. Res..

[25]  Sanjay Mehrotra,et al.  Distributionally robust optimization with decision dependent ambiguity sets , 2018, Optimization Letters.

[26]  Weijun Xie,et al.  On distributionally robust chance constrained programs with Wasserstein distance , 2018, Mathematical Programming.

[27]  Cosmin Safta,et al.  Distributionally Robust Optimization with Principal Component Analysis , 2018, SIAM J. Optim..

[28]  Fengqi You,et al.  Data-Driven Adaptive Robust Optimization Framework Based on Principal Component Analysis , 2018, 2018 Annual American Control Conference (ACC).

[29]  Mark S. Squillante,et al.  Efficient Stochastic Gradient Descent for Distributionally Robust Learning , 2018, ArXiv.

[30]  Shabbir Ahmed,et al.  Distributionally robust simple integer recourse , 2018, Comput. Manag. Sci..

[31]  Bernardo K. Pagnoncelli,et al.  Scenario reduction for stochastic programs with Conditional Value-at-Risk , 2018, Math. Program..

[32]  Huan Xu,et al.  Robust Hypothesis Testing Using Wasserstein Uncertainty Sets , 2018, NeurIPS.

[33]  Bertrand Melenberg,et al.  Robust Optimization with Ambiguous Stochastic Constraints Under Mean and Dispersion Information , 2018, Oper. Res..

[34]  Shabbir Ahmed,et al.  On Deterministic Reformulations of Distributionally Robust Joint Chance Constrained Optimization Problems , 2018, SIAM J. Optim..

[35]  Fengqi You,et al.  Data-driven decision making under uncertainty integrating robust optimization with principal component analysis and kernel smoothing methods , 2018, Comput. Chem. Eng..

[36]  J. Lasserre,et al.  Representation of distributionally robust chance-constraints , 2018 .

[37]  Yongpei Guan,et al.  Data-driven risk-averse stochastic optimization with Wasserstein metric , 2018, Oper. Res. Lett..

[38]  Jie Sun,et al.  Quadratic two-stage stochastic optimization with coherent measures of risk , 2018, Math. Program..

[39]  Barnabás Póczos,et al.  Minimax Distribution Estimation in Wasserstein Distance , 2018, ArXiv.

[40]  Chao Shang,et al.  Distributionally robust optimization for planning and scheduling under uncertainty , 2018, Comput. Chem. Eng..

[41]  Ioannis Ch. Paschalidis,et al.  A Robust Learning Approach for Regression Models Based on Distributionally Robust Optimization , 2018, J. Mach. Learn. Res..

[42]  Xi Chen,et al.  Wasserstein Distributional Robustness and Regularization in Statistical Learning , 2017, 1712.06050.

[43]  Manfred Morari,et al.  Distributionally robust expectation inequalities for structured distributions , 2017, Mathematical Programming.

[44]  Andrew E. B. Lim,et al.  Calibration of Distributionally Robust Empirical Optimization Models , 2017, Oper. Res..

[45]  Chao Shang,et al.  Data-driven robust optimization based on kernel learning , 2017, Comput. Chem. Eng..

[46]  Yongchao Liu,et al.  Primal-dual hybrid gradient method for distributionally robust optimization problems , 2017, Oper. Res. Lett..

[47]  John C. Duchi,et al.  Certifying Some Distributional Robustness with Principled Adversarial Training , 2017, ICLR.

[48]  Daniel Kuhn,et al.  Regularization via Mass Transportation , 2017, J. Mach. Learn. Res..

[49]  Alexander Shapiro,et al.  Distributionally Robust Stochastic Programming , 2017, SIAM J. Optim..

[50]  Samuel Burer,et al.  A data-driven distributionally robust bound on the expected optimal value of uncertain mixed 0-1 linear programming , 2017, Comput. Manag. Sci..

[51]  Yunxiao Deng,et al.  Learning Enabled Optimization: Towards a Fusion of Statistical Learning and Stochastic Optimization , 2017 .

[52]  Xiaojun Chen,et al.  Discrete approximation of two-stage stochastic and distributionally robust linear complementarity problems , 2017, Mathematical Programming.

[53]  Johannes O. Royset,et al.  Variational Theory for Optimization under Stochastic Ambiguity , 2017, SIAM J. Optim..

[54]  Yongchao Liu,et al.  Distributionally Robust Reward-Risk Ratio Optimization with Moment Constraints , 2017, SIAM J. Optim..

[55]  Jaeho Lee,et al.  Minimax Statistical Learning with Wasserstein distances , 2017, NeurIPS.

[56]  Jaeho Lee,et al.  Minimax Statistical Learning and Domain Adaptation with Wasserstein Distances , 2017, ArXiv.

[57]  Fan Zhang,et al.  Data-Driven Optimal Transport Cost Selection For Distributionally Robust Optimization , 2017, 2019 Winter Simulation Conference (WSC).

[58]  J. Blanchet,et al.  Doubly Robust Data‐driven Distributionally Robust Optimization , 2017, Applied Modeling Techniques and Data Analysis 1.

[59]  Yang Kang,et al.  Distributionally Robust Groupwise Regularization Estimator , 2017, ACML.

[60]  Liwei Zhang,et al.  Convergence Analysis for Mathematical Programs with Distributionally Robust Chance Constraint , 2017, SIAM J. Optim..

[61]  Sanjay Mehrotra,et al.  Decomposition Algorithm for Distributionally Robust Optimization using Wasserstein Metric , 2017, 1704.03920.

[62]  Yongchao Liu,et al.  Distributionally robust optimization with matrix moment constraints: Lagrange duality and cutting plane methods , 2017, Mathematical Programming.

[63]  Daniel Kuhn,et al.  Ambiguous Joint Chance Constraints Under Mean and Dispersion Information , 2017, Oper. Res..

[64]  Georg Ch. Pflug,et al.  Incorporating statistical model error into the calculation of acceptability prices of contingent claims , 2017, Mathematical Programming.

[65]  J. Blanchet,et al.  Semi‐supervised Learning Based on Distributionally Robust Optimization , 2017, Data Analysis and Applications 3.

[66]  Insoon Yang,et al.  A dynamic game approach to distributionally robust safety specifications for stochastic systems , 2017, Autom..

[67]  A. Kleywegt,et al.  Distributionally Robust Stochastic Optimization with Dependence Structure , 2017, 1701.04200.

[68]  Karthik Natarajan,et al.  Worst-Case Expected Shortfall with Univariate and Bivariate Marginals , 2017, INFORMS J. Comput..

[69]  D. Kuhn,et al.  Scenario reduction revisited: fundamental limits and guarantees , 2017, Mathematical Programming.

[70]  Masashi Sugiyama,et al.  Revisiting Distributionally Robust Supervised Learning in Classification , 2016, 1611.02041.

[71]  J. Blanchet,et al.  Robust Wasserstein profile inference and applications to machine learning , 2016, J. Appl. Probab..

[72]  John Duchi,et al.  Statistics of Robust Optimization: A Generalized Empirical Likelihood Approach , 2016, Math. Oper. Res..

[73]  John C. Duchi,et al.  Variance-based Regularization with Convex Objectives , 2016, NIPS.

[74]  Ruiwei Jiang,et al.  Ambiguous Chance-Constrained Binary Programs under Mean-Covariance Information , 2016, SIAM J. Optim..

[75]  Daniel Kuhn,et al.  Conic Programming Reformulations of Two-Stage Distributionally Robust Linear Programs over Wasserstein Balls , 2016, Oper. Res..

[76]  Jonathan Yu-Meng Li,et al.  Closed-Form Solutions for Worst-Case Law Invariant Risk Measures with Application to Robust Portfolio Optimization , 2016, Oper. Res..

[77]  Jie Zhang,et al.  Quantitative Stability Analysis for Distributionally Robust Optimization with Moment Constraints , 2016, SIAM J. Optim..

[78]  Ruiwei Jiang,et al.  Data-driven chance constrained stochastic program , 2015, Mathematical Programming.

[79]  Napat Rujeerapaiboon,et al.  Robust Growth-Optimal Portfolios , 2016, Manag. Sci..

[80]  David Tse,et al.  A Minimax Approach to Supervised Learning , 2016, NIPS.

[81]  Xiaoqi Yang,et al.  Optimality Conditions for Semi-Infinite and Generalized Semi-Infinite Programs Via Lower Order Exact Penalty Functions , 2016, J. Optim. Theory Appl..

[82]  Henry Lam,et al.  Recovering Best Statistical Guarantees via the Empirical Divergence-Based Distributionally Robust Optimization , 2016, Oper. Res..

[83]  Napat Rujeerapaiboon,et al.  Chebyshev Inequalities for Products of Random Variables , 2016, Math. Oper. Res..

[84]  Yang Kang,et al.  Sample Out-of-Sample Inference Based on Wasserstein Distance , 2016, Oper. Res..

[85]  Karthyek R. A. Murthy,et al.  Quantifying Distributional Model Risk Via Optimal Transport , 2016, Math. Oper. Res..

[86]  Stavros A. Zenios,et al.  Robust VaR and CVaR Optimization under Joint Ambiguity in Distributions, Means, and Covariances , 2016, Eur. J. Oper. Res..

[87]  J. Watson,et al.  Risk-averse stochastic unit commitment with incomplete information , 2016 .

[88]  Alexander Shapiro,et al.  Rectangular Sets of Probability Measures , 2016, Oper. Res..

[89]  Daniel Kuhn,et al.  Distributionally Robust Control of Constrained Stochastic Systems , 2016, IEEE Transactions on Automatic Control.

[90]  András Prékopa,et al.  ON PROBABILISTIC CONSTRAINED PROGRAMMING , 2015 .

[91]  Daniel Kuhn,et al.  Data-driven inverse optimization with imperfect information , 2015, Mathematical Programming.

[92]  Ya-Xiang Yuan,et al.  Feasible Method for Semi-Infinite Programs , 2015, SIAM J. Optim..

[93]  Jie Xu,et al.  Stochastic optimization using Hellinger distance , 2015, 2015 Winter Simulation Conference (WSC).

[94]  Sanjay Mehrotra,et al.  A Two-Stage Stochastic Integer Programming Approach to Integrated Staffing and Scheduling with Application to Nurse Management , 2015, Oper. Res..

[95]  Elisabeth Köbis,et al.  On Robust Optimization , 2015, J. Optim. Theory Appl..

[96]  Daniel Kuhn,et al.  K-adaptability in two-stage distributionally robust binary programming , 2015, Oper. Res. Lett..

[97]  David Tse,et al.  Discrete Rényi Classifiers , 2015, NIPS.

[98]  Xiaobo Li,et al.  Robustness to Dependency in Portfolio Optimization Using Overlapping Marginals , 2015, Oper. Res..

[99]  Daniel Kuhn,et al.  Distributionally Robust Logistic Regression , 2015, NIPS.

[100]  Güzin Bayraksan,et al.  Data-Driven Stochastic Programming Using Phi-Divergences , 2015 .

[101]  Soumyadip Ghosh,et al.  Robust Analysis in Stochastic Simulation: Computation and Performance Guarantees , 2015, Oper. Res..

[102]  Henry Lam,et al.  Tail Analysis Without Parametric Models: A Worst-Case Perspective , 2015, Oper. Res..

[103]  Johannes O. Royset,et al.  Measures of Residual Risk with Connections to Regression, Risk Tracking, Surrogate Models, and Ambiguity , 2015, SIAM J. Optim..

[104]  Daniel Kuhn,et al.  Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformulations , 2015, Mathematical Programming.

[105]  Sanjay Mehrotra,et al.  Robust decision making over a set of random targets or risk-averse utilities with an application to portfolio optimization , 2015 .

[106]  Daniel Kuhn,et al.  A distributionally robust perspective on uncertainty quantification and chance constrained programming , 2015, Mathematical Programming.

[107]  Daniel Kuhn,et al.  Generalized Gauss inequalities via semidefinite programming , 2015, Mathematical Programming.

[108]  Amir Ardestani-Jaafari,et al.  Robust Optimization of Sums of Piecewise Linear Functions with Application to Inventory Problems , 2015, Oper. Res..

[109]  Abdelhak M. Zoubir,et al.  Minimax Robust Hypothesis Testing , 2015, IEEE Transactions on Information Theory.

[110]  Huan Xu,et al.  Distributionally Robust Counterpart in Markov Decision Processes , 2015, IEEE Transactions on Automatic Control.

[111]  Dick den Hertog,et al.  A practical guide to robust optimization , 2015, 1501.02634.

[112]  Zizhuo Wang,et al.  A Composite Risk Measure Framework for Decision Making Under Uncertainty , 2015, Journal of the Operations Research Society of China.

[113]  James R. Luedtke,et al.  Models and formulations for multivariate dominance-constrained stochastic programs , 2015 .

[114]  Daniel Kuhn,et al.  Distributionally Robust Convex Optimization , 2014, Oper. Res..

[115]  David Wozabal,et al.  Robustifying Convex Risk Measures for Linear Portfolios: A Nonparametric Approach , 2014, Oper. Res..

[116]  Jane J. Ye,et al.  Solving semi-infinite programs by smoothing projected gradient method , 2014, Comput. Optim. Appl..

[117]  Jin Qi,et al.  Distributionally robust discrete optimization with Entropic Value-at-Risk , 2014, Oper. Res. Lett..

[118]  Huan Xu,et al.  Distributionally robust chance constraints for non-linear uncertainties , 2014, Mathematical Programming.

[119]  Michael C. Fu,et al.  Handbook of Simulation Optimization , 2014 .

[120]  Vishal Gupta,et al.  Robust sample average approximation , 2014, Math. Program..

[121]  Georg Ch. Pflug,et al.  On distributionally robust multiperiod stochastic optimization , 2014, Comput. Manag. Sci..

[122]  Cynthia Rudin,et al.  Robust Optimization using Machine Learning for Uncertainty Sets , 2014, ISAIM.

[123]  Elad Eban,et al.  Discrete Chebyshev Classifiers , 2014, ICML.

[124]  Cécile Murat,et al.  Recent advances in robust optimization: An overview , 2014, Eur. J. Oper. Res..

[125]  Thomas A. Henzinger,et al.  Probabilistic programming , 2014, FOSE.

[126]  Bertrand Melenberg,et al.  Computationally Tractable Counterparts of Distributionally Robust Constraints on Risk Measures , 2014, SIAM Rev..

[127]  Kok Lay Teo,et al.  A new exact penalty method for semi-infinite programming problems , 2014, J. Comput. Appl. Math..

[128]  Daniel Kuhn,et al.  Distributionally robust multi-item newsvendor problems with multimodal demand distributions , 2014, Mathematical Programming.

[129]  Berç Rustem,et al.  Worst-case robust Omega ratio , 2014, Eur. J. Oper. Res..

[130]  Kim-Chuan Toh,et al.  A Probabilistic Model for Minmax Regret in Combinatorial Optimization , 2014, Oper. Res..

[131]  Sanjay Mehrotra,et al.  Stochastically weighted stochastic dominance concepts with an application in capital budgeting , 2014, Eur. J. Oper. Res..

[132]  Vishal Gupta,et al.  Data-driven robust optimization , 2013, Math. Program..

[133]  David Love,et al.  Two-stage likelihood robust linear program with application to water allocation under uncertainty , 2013, 2013 Winter Simulations Conference (WSC).

[134]  Soumyadip Ghosh,et al.  Iterative methods for robust estimation under bivariate distributional uncertainty , 2013, 2013 Winter Simulations Conference (WSC).

[135]  A. Guillin,et al.  On the rate of convergence in Wasserstein distance of the empirical measure , 2013, 1312.2128.

[136]  Daniel Kuhn,et al.  Robust Data-Driven Dynamic Programming , 2013, NIPS.

[137]  Jia Yuan Yu,et al.  Data-driven Distributionally Robust Polynomial Optimization , 2013, NIPS.

[138]  Dick den Hertog,et al.  Safe Approximations of Ambiguous Chance Constraints Using Historical Data , 2013, INFORMS J. Comput..

[139]  Peter W. Glynn,et al.  Likelihood robust optimization for data-driven problems , 2013, Computational Management Science.

[140]  Trevor Hastie,et al.  An Introduction to Statistical Learning , 2013, Springer Texts in Statistics.

[141]  Sanjay Mehrotra,et al.  A Cutting Surface Algorithm for Semi-Infinite Convex Programming with an Application to Moment Robust Optimization , 2013, SIAM J. Optim..

[142]  He Zhang,et al.  Models and algorithms for distributionally robust least squares problems , 2013, Mathematical Programming.

[143]  Roy H. Kwon,et al.  Portfolio selection under model uncertainty: a penalized moment-based optimization approach , 2013, J. Glob. Optim..

[144]  Linwei Xin,et al.  Time (in)consistency of multistage distributionally robust inventory models with moment constraints , 2013, Eur. J. Oper. Res..

[145]  Alois Pichler,et al.  Evaluations of Risk Measures for Different Probability Measures , 2013, SIAM J. Optim..

[146]  Alexander Shapiro,et al.  On Kusuoka Representation of Law Invariant Risk Measures , 2013, Math. Oper. Res..

[147]  Diego Klabjan,et al.  Robust Stochastic Lot-Sizing by Means of Histograms , 2013 .

[148]  Daniel Kuhn,et al.  Robust Markov Decision Processes , 2013, Math. Oper. Res..

[149]  Jean-Philippe Vial,et al.  Deriving robust counterparts of nonlinear uncertain inequalities , 2012, Math. Program..

[150]  Jian Hu,et al.  Robust and Stochastically Weighted Multiobjective Optimization Models and Reformulations , 2012, Oper. Res..

[151]  Alexander Shapiro,et al.  Minimax and risk averse multistage stochastic programming , 2012, Eur. J. Oper. Res..

[152]  Shie Mannor,et al.  Optimization Under Probabilistic Envelope Constraints , 2012, Oper. Res..

[153]  David Wozabal,et al.  A framework for optimization under ambiguity , 2012, Ann. Oper. Res..

[154]  G. Pflug,et al.  The 1/ N investment strategy is optimal under high model ambiguity , 2012 .

[155]  Cynthia Rudin,et al.  Machine learning with operational costs , 2011, J. Mach. Learn. Res..

[156]  Daniel Kuhn,et al.  Distributionally robust joint chance constraints with second-order moment information , 2011, Mathematical Programming.

[157]  Tito Homem-de-Mello,et al.  Risk-adjusted budget allocation models with application in homeland security , 2011 .

[158]  Melvyn Sim,et al.  Robust Optimization Made Easy with ROME , 2011, Oper. Res..

[159]  Anja De Waegenaere,et al.  Robust Solutions of Optimization Problems Affected by Uncertain Probabilities , 2011, Manag. Sci..

[160]  Cynthia Rudin,et al.  On combining machine learning with decision making , 2011, Machine Learning.

[161]  M. Dufwenberg Game theory. , 2011, Wiley interdisciplinary reviews. Cognitive science.

[162]  Shie Mannor,et al.  Distributionally Robust Markov Decision Processes , 2010, Math. Oper. Res..

[163]  Warren B. Powell,et al.  Nonparametric Density Estimation for Stochastic Optimization with an Observable State Variable , 2010, NIPS.

[164]  Constantine Caramanis,et al.  Theory and Applications of Robust Optimization , 2010, SIAM Rev..

[165]  Melvyn Sim,et al.  Distributionally Robust Optimization and Its Tractable Approximations , 2010, Oper. Res..

[166]  Dimitris Bertsimas,et al.  A Soft Robust Model for Optimization Under Ambiguity , 2010, Oper. Res..

[167]  Xuan Vinh Doan,et al.  Models for Minimax Stochastic Linear Optimization Problems with Risk Aversion , 2010, Math. Oper. Res..

[168]  Melvyn Sim,et al.  From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization , 2010, Oper. Res..

[169]  Alexander Shapiro,et al.  Lectures on Stochastic Programming: Modeling and Theory , 2009 .

[170]  Subir Bose,et al.  A dynamic mechanism and surplus extraction under ambiguity , 2009, J. Econ. Theory.

[171]  Chung-Piaw Teo,et al.  Mixed 0-1 Linear Programs Under Objective Uncertainty: A Completely Positive Representation , 2009, Oper. Res..

[172]  Sanjay Mehrotra,et al.  A Cutting-Surface Method for Uncertain Linear Programs with Polyhedral Stochastic Dominance Constraints , 2009, SIAM J. Optim..

[173]  Werner Römisch,et al.  Scenario tree reduction for multistage stochastic programs , 2009, Comput. Manag. Sci..

[174]  Antonio Alonso Ayuso,et al.  Introduction to Stochastic Programming , 2009 .

[175]  Melvyn Sim,et al.  Goal-Driven Optimization , 2009, Oper. Res..

[176]  Arkadi Nemirovski,et al.  On Safe Tractable Approximations of Chance-Constrained Linear Matrix Inequalities , 2009, Math. Oper. Res..

[177]  Werner Römisch,et al.  Scenario tree modeling for multistage stochastic programs , 2009, Math. Program..

[178]  C. Villani Optimal Transport: Old and New , 2008 .

[179]  Marco C. Campi,et al.  The Exact Feasibility of Randomized Solutions of Uncertain Convex Programs , 2008, SIAM J. Optim..

[180]  Darinka Dentcheva,et al.  Optimization with multivariate stochastic dominance constraints , 2008, SIAM J. Optim..

[181]  James R. Luedtke,et al.  A Sample Approximation Approach for Optimization with Probabilistic Constraints , 2008, SIAM J. Optim..

[182]  Christian Küchler,et al.  On Stability of Multistage Stochastic Programs , 2008, SIAM J. Optim..

[183]  Peng Sun,et al.  A Linear Decision-Based Approximation Approach to Stochastic Programming , 2008, Oper. Res..

[184]  Peng Sun,et al.  A Robust Optimization Perspective on Stochastic Programming , 2007, Oper. Res..

[185]  Giuseppe Carlo Calafiore,et al.  Ambiguous Risk Measures and Optimal Robust Portfolios , 2007, SIAM J. Optim..

[186]  F. Nogales,et al.  Portfolio Selection With Robust Estimation , 2007, Oper. Res..

[187]  G. Pflug,et al.  Ambiguity in portfolio selection , 2007 .

[188]  Bernard C. Levy,et al.  Robust Hypothesis Testing With a Relative Entropy Tolerance , 2007, IEEE Transactions on Information Theory.

[189]  Tamás Terlaky,et al.  A Survey of the S-Lemma , 2007, SIAM Rev..

[190]  M. Teboulle,et al.  AN OLD‐NEW CONCEPT OF CONVEX RISK MEASURES: THE OPTIMIZED CERTAINTY EQUIVALENT , 2007 .

[191]  Katta G. Murty,et al.  Nonlinear Programming Theory and Algorithms , 2007, Technometrics.

[192]  Alexander Shapiro,et al.  Convex Approximations of Chance Constrained Programs , 2006, SIAM J. Optim..

[193]  Dimitris Bertsimas,et al.  Persistence in discrete optimization under data uncertainty , 2006, Math. Program..

[194]  David P. Morton,et al.  Assessing solution quality in stochastic programs , 2006, Algorithms for Optimization with Incomplete Information.

[195]  Alexander Shapiro,et al.  Optimization of Convex Risk Functions , 2006, Math. Oper. Res..

[196]  G. Calafiore,et al.  On Distributionally Robust Chance-Constrained Linear Programs , 2006 .

[197]  Garud Iyengar,et al.  Ambiguous chance constrained problems and robust optimization , 2006, Math. Program..

[198]  Stephen P. Boyd,et al.  Extending Scope of Robust Optimization: Comprehensive Robust Counterparts of Uncertain Problems , 2006, Math. Program..

[199]  Thomas Hofmann,et al.  Large Margin Methods for Structured and Interdependent Output Variables , 2005, J. Mach. Learn. Res..

[200]  L. Pardo Statistical Inference Based on Divergence Measures , 2005 .

[201]  Stephen P. Boyd,et al.  Convex Optimization , 2004, IEEE Transactions on Automatic Control.

[202]  Ioana Popescu,et al.  A Semidefinite Programming Approach to Optimal-Moment Bounds for Convex Classes of Distributions , 2005, Math. Oper. Res..

[203]  Ioana Popescu,et al.  Optimal Inequalities in Probability Theory: A Convex Optimization Approach , 2005, SIAM J. Optim..

[204]  Kiyohiko G. Nishimura,et al.  Search and Knightian uncertainty , 2004, J. Econ. Theory.

[205]  Melvyn Sim,et al.  Robust linear optimization under general norms , 2004, Oper. Res. Lett..

[206]  A. Dawid,et al.  Game theory, maximum entropy, minimum discrepancy and robust Bayesian decision theory , 2004, math/0410076.

[207]  Naftali Tishby,et al.  The Minimum Information Principle for Discriminative Learning , 2004, UAI.

[208]  A. Ben-Tal,et al.  Adjustable robust solutions of uncertain linear programs , 2004, Math. Program..

[209]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[210]  Laurent El Ghaoui,et al.  Worst-Case Value-At-Risk and Robust Portfolio Optimization: A Conic Programming Approach , 2003, Oper. Res..

[211]  Jitka Dupacová,et al.  Scenario reduction in stochastic programming , 2003, Math. Program..

[212]  B. Halldórsson,et al.  An Interior-Point Method for a Class of Saddle-Point Problems , 2003 .

[213]  Michael I. Jordan,et al.  A Robust Minimax Approach to Classification , 2003, J. Mach. Learn. Res..

[214]  Peter L. Bartlett,et al.  Rademacher and Gaussian Complexities: Risk Bounds and Structural Results , 2003, J. Mach. Learn. Res..

[215]  Donald Goldfarb,et al.  Robust Portfolio Selection Problems , 2003, Math. Oper. Res..

[216]  Werner Römisch,et al.  Scenario Reduction Algorithms in Stochastic Programming , 2003, Comput. Optim. Appl..

[217]  Svetlozar T. Rachev,et al.  Quantitative Stability in Stochastic Programming: The Method of Probability Metrics , 2002, Math. Oper. Res..

[218]  Kiyohiko G. Nishimura,et al.  An Axiomatic Approach to ƒÃ-contamination , 2002 .

[219]  Alison L Gibbs,et al.  On Choosing and Bounding Probability Metrics , 2002, math/0209021.

[220]  Alexander Shapiro,et al.  Minimax analysis of stochastic problems , 2002, Optim. Methods Softw..

[221]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[222]  R. Rockafellar,et al.  Conditional Value-at-Risk for General Loss Distributions , 2001 .

[223]  Rüdiger Schultz,et al.  Some Aspects of Stability in Stochastic Programming , 2000, Ann. Oper. Res..

[224]  Arkadi Nemirovski,et al.  Robust solutions of Linear Programming problems contaminated with uncertain data , 2000, Math. Program..

[225]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[226]  Georg Still,et al.  Generalized semi-infinite programming: Theory and methods , 1999, Eur. J. Oper. Res..

[227]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[228]  Arkadi Nemirovski,et al.  Robust Convex Optimization , 1998, Math. Oper. Res..

[229]  Laurent El Ghaoui,et al.  Robust Solutions to Uncertain Semidefinite Programs , 1998, SIAM J. Optim..

[230]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[231]  Laurent El Ghaoui,et al.  Robust Solutions to Least-Squares Problems with Uncertain Data , 1997, SIAM J. Matrix Anal. Appl..

[232]  Michèle Breton,et al.  Algorithms for the solution of stochastic dynamic minimax problems , 1995, Comput. Optim. Appl..

[233]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[234]  M. Puterman Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[235]  Kenneth O. Kortanek,et al.  Semi-Infinite Programming: Theory, Methods, and Applications , 1993, SIAM Rev..

[236]  G. Gallego,et al.  The Distribution Free Newsboy Problem: Review and Extensions , 1993 .

[237]  J. Freeman Probability Metrics and the Stability of Stochastic Models , 1991 .

[238]  J. Dupacová Stability and sensitivity-analysis for stochastic programming , 1991 .

[239]  R. Reiss Approximate Distributions of Order Statistics: With Applications to Nonparametric Statistics , 1989 .

[240]  M. Teboulle,et al.  Expected Utility, Penalty Functions, and Duality in Stochastic Nonlinear Programming , 1986 .

[241]  L. Devroye,et al.  Nonparametric Density Estimation: The L 1 View. , 1985 .

[242]  A. Charnes,et al.  On the theory of semi‐infinite programming and a generalization of the kuhn‐tucker saddle point theorem for arbitrary convex functions , 1969 .

[243]  R. Dudley The Speed of Mean Glivenko-Cantelli Convergence , 1969 .

[244]  P. J. Huber A Robust Version of the Probability Ratio Test , 1965 .

[245]  W W Cooper,et al.  DUALITY, HAAR PROGRAMS, AND FINITE SEQUENCE SPACES. , 1962, Proceedings of the National Academy of Sciences of the United States of America.

[246]  A. Charnes,et al.  Cost Horizons and Certainty Equivalents: An Approach to Stochastic Programming of Heating Oil , 1958 .

[247]  M. Sion On general minimax theorems , 1958 .

[248]  EN UrsulaVONDERLEYEN Concentration , 1894 .

[249]  Güzin Bayraksan,et al.  Identifying effective scenarios in distributionally robust stochastic programs with total variation distance , 2019, Math. Program..

[250]  Cynthia Rudin,et al.  The Big Data Newsvendor: Practical Insights from Machine Learning , 2013, Oper. Res..

[251]  J. Mathieu,et al.  Ambiguous risk constraints with moment and unimodality information , 2019, Math. Program..

[252]  H. Bevrani,et al.  Duality , 2019, Optimization in Electrical Engineering.

[253]  Sanjay Mehrotra,et al.  Distributionally Robust Chance-Constrained Assignment Problem with an Application to Operating Room Planning , 2019 .

[254]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[255]  Chao Shang,et al.  Robust Optimization in High-Dimensional Data Space with Support Vector Clustering , 2018 .

[256]  M. Bansal,et al.  Two-stage stochastic ( and distributionally robust ) p-order conic mixed integer programs : Tight second stage formulations , 2018 .

[257]  Chao Shang,et al.  Data-Driven Process Network Planning: A Distributionally Robust Optimization Approach , 2018 .

[258]  Fengqi You,et al.  Hedging against uncertainty in biomass processing network design using a data-driven approach , 2018 .

[259]  Chao Shang,et al.  Process Scheduling under Ambiguity Uncertainty Probability Distribution , 2018 .

[260]  M. Lejeune,et al.  Distributionally Robust Optimization with Decision-Dependent Ambiguity Set , 2018 .

[261]  Zhi Chen,et al.  Adaptive Robust Optimization with Scenario-wise Ambiguity Sets , 2018 .

[262]  Van Parys,et al.  Bootstrap Robust Prescriptive Analytics , 2018 .

[263]  Chung-Piaw Teo,et al.  On reduced semidefinite programs for second order moment bounds with applications , 2017, Math. Program..

[264]  Gökhan Gül,et al.  Asymptotically Minimax Robust Hypothesis Testing , 2017, ArXiv.

[265]  John C. Duchi,et al.  Stochastic Gradient Methods for Distributionally Robust Optimization with f-divergences , 2016, NIPS.

[266]  Benjamin Pfaff,et al.  Perturbation Analysis Of Optimization Problems , 2016 .

[267]  Sophia Blau,et al.  Goodness Of Fit Statistics For Discrete Multivariate Data , 2016 .

[268]  Güzin Bayraksan,et al.  Phi-Divergence Constrained Ambiguous Stochastic Programs for Data-Driven Optimization , 2016 .

[269]  Yongpei Guan,et al.  Data-Driven Risk-Averse Two-Stage Stochastic Program with ζ-Structure Probability Metrics , 2015 .

[270]  Sanjay Mehrotra,et al.  A Distributionally-robust approach for finding support vector machine , 2015 .

[271]  Sanjay Mehrotra,et al.  A Data Driven Functionally Robust Approach for Coordinating Pricing and Order Quantity Decisions with Unknown Demand Function , 2015 .

[272]  Alon Gonen Understanding Machine Learning From Theory to Algorithms 1st Edition Shwartz Solutions Manual , 2015 .

[273]  Tito Homem-de-Mello,et al.  Monte Carlo sampling-based methods for stochastic optimization , 2014 .

[274]  G. Pflug,et al.  The Problem of Ambiguity in Stochastic Optimization , 2014 .

[275]  Raghu Pasupathy,et al.  Simulation Optimization: A Concise Overview and Implementation Guide , 2013 .

[276]  Daniel Kuhn,et al.  Worst-Case Value at Risk of Nonlinear Portfolios , 2013, Manag. Sci..

[277]  Melvyn Sim,et al.  A practicable framework for distributionally robust linear optimization , 2013 .

[278]  Anthony Man-Cho So,et al.  Ambiguous probabilistic programs , 2013 .

[279]  Georg Ch. Pflug,et al.  A Distance For Multistage Stochastic Optimization Models , 2012, SIAM J. Optim..

[280]  Y. Z. Mehrjerdi A Chance Constrained Programming , 2012 .

[281]  Zhaolin Hu,et al.  Kullback-Leibler divergence constrained distributionally robust optimization , 2012 .

[282]  W. Marsden I and J , 2012 .

[283]  Erick Delage,et al.  Distributionally robust optimization in context of data-driven problems , 2009 .

[284]  David P. Morton,et al.  Assessing solution quality in stochastic programs via sampling: INFORMS 2009 , 2009 .

[285]  Jian Hu,et al.  Sample Average Approximation for Stochastic Dominance Constrained Programs , 2009 .

[286]  Alexander Shapiro,et al.  Lectures on Stochastic Programming - Modeling and Theory , 2009, MOS-SIAM Series on Optimization.

[287]  Georgia Perakis,et al.  Regret in the Newsvendor Model with Partial Information , 2008, Oper. Res..

[288]  Ioana Popescu,et al.  Robust Mean-Covariance Solutions for Stochastic Optimization , 2007, Oper. Res..

[289]  R. Tyrrell Rockafellar,et al.  Coherent Approaches to Risk in Optimization Under Uncertainty , 2007 .

[290]  Jack L. Treynor,et al.  MUTUAL FUND PERFORMANCE* , 2007 .

[291]  Stephen P. Boyd,et al.  Generalized Chebyshev Bounds via Semidefinite Programming , 2007, SIAM Rev..

[292]  Marco A. López,et al.  Semi-infinite programming , 2007, Eur. J. Oper. Res..

[293]  A. Nemirovski,et al.  Scenario Approximations of Chance Constraints , 2006 .

[294]  Darinka Dentcheva,et al.  Optimization Models with Probabilistic Constraints , 2006 .

[295]  A. Ruszczynski,et al.  Nonlinear Optimization , 2006 .

[296]  Giuseppe Carlo Calafiore,et al.  Uncertain convex programs: randomized solutions and confidence levels , 2005, Math. Program..

[297]  Alexander Shapiro,et al.  On Complexity of Stochastic Programming Problems , 2005 .

[298]  C. Villani,et al.  Weighted Csiszár-Kullback-Pinsker inequalities and applications to transportation inequalities , 2005 .

[299]  Alexander Shapiro,et al.  On a Class of Minimax Stochastic Programs , 2004, SIAM J. Optim..

[300]  Marco C. Campi,et al.  Decision Making in an Uncertain Environment: the Scenario based Optimization Approach , 2004 .

[301]  Melvyn Sim,et al.  The Price of Robustness , 2004, Oper. Res..

[302]  Dimitris Bertsimas,et al.  Probabilistic Combinatorial Optimization: Moments, Semidefinite Programming, and Asymptotic Bounds , 2004, SIAM J. Optim..

[303]  A. Shapiro Monte Carlo Sampling Methods , 2003 .

[304]  W. Römisch Stability of Stochastic Programming Problems , 2003 .

[305]  Abaxbank,et al.  Spectral Measures of Risk : a Coherent Representation of Subjective Risk Aversion , 2002 .

[306]  W. Shadwick,et al.  A Universal Performance Measure , 2002 .

[307]  A. Shapiro ON DUALITY THEORY OF CONIC LINEAR PROBLEMS , 2001 .

[308]  S. Kusuoka On law invariant coherent risk measures , 2001 .

[309]  A. Owen,et al.  Empirical Likelihood , 2001 .

[310]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[311]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[312]  Rembert Reemtsen,et al.  Numerical Methods for Semi-Infinite Programming: A Survey , 1998 .

[313]  I. Gilboa,et al.  Maxmin Expected Utility with Non-Unique Prior , 1989 .

[314]  I. Vajda Theory of statistical inference and information , 1989 .

[315]  Aharon Ben-Tal,et al.  Lectures on modern convex optimization , 1987 .

[316]  J. Dupacová The minimax approach to stochastic programming and an illustrative application , 1987 .

[317]  G. Nürnberger Global unicity in optimization and approximation , 1985 .

[318]  G. Nürnberger Global unicity in semi-infinite optimization , 1985 .

[319]  R. P. Hettich,et al.  Semi-infinite programming: Conditions of optimality and applications , 1978 .

[320]  R. Tyrrell Rockafellar Conjugate Duality and Optimization , 1974 .

[321]  A. Prékopa PROGRAMMING UNDER PROBABILISTIC CONSTRAINTS WITH A RANDOM TECHNOLOGY MATRIX , 1974 .

[322]  J. Žáčková On minimax solutions of stochastic linear programming problems , 1966 .

[323]  石井 恵一 On sharpness of Tchebycheff-type inequalities = チェビシェフ型不等式の最良性について , 1964 .

[324]  A. Charnes,et al.  Duality in Semi-Infinite Programs and some Works of Haar and Caratheodory , 1963 .

[325]  Herbert E. Scarf,et al.  A Min-Max Solution of an Inventory Problem , 1957 .

[326]  E. Delage,et al.  Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems , 2010, Oper. Res..

[327]  P. Frazier,et al.  Advanced tutorial: Input uncertainty and robust analysis in stochastic simulation , 2016, 2016 Winter Simulation Conference (WSC).