The oxamate route, a versatile post-functionalization for metal incorporation in MIL-101(Cr): Catalytic applications of Cu, Pd, and Au

[1]  M. Hartmann,et al.  Amino-functionalized basic catalysts with MIL-101 structure , 2012 .

[2]  F. Kapteijn,et al.  Highly Selective Chemical Sensing in a Luminescent Nanoporous Magnet , 2012, Advanced materials.

[3]  Seth M. Cohen,et al.  Postsynthetic ligand and cation exchange in robust metal-organic frameworks. , 2012, Journal of the American Chemical Society.

[4]  F. Kapteijn,et al.  Selective gas and vapor sorption and magnetic sensing by an isoreticular mixed-metal-organic framework. , 2012, Journal of the American Chemical Society.

[5]  Hong‐Cai Zhou,et al.  Pore surface engineering with controlled loadings of functional groups via click chemistry in highly stable metal-organic frameworks. , 2012, Journal of the American Chemical Society.

[6]  Yichao Lin,et al.  Direct synthesis of amine-functionalized MIL-101(Cr) nanoparticles and application for CO2 capture , 2012 .

[7]  M. A. van der Veen,et al.  NH2-MIL-53(Al): a high-contrast reversible solid-state nonlinear optical switch. , 2012, Journal of the American Chemical Society.

[8]  M. Vandichel,et al.  Electronic effects of linker substitution on Lewis acid catalysis with metal-organic frameworks. , 2012, Angewandte Chemie.

[9]  A. Corma,et al.  Bifunctional Metal Organic Framework Catalysts for Multistep Reactions: MOF‐Cu(BTC)‐[Pd] Catalyst for One‐Pot Heteroannulation of Acetylenic Compounds , 2012 .

[10]  P. Voort,et al.  Vanadium Analogues of Nonfunctionalized and Amino‐Functionalized MOFs with MIL‐101 Topology – Synthesis, Characterization, and Gas Sorption Properties , 2012 .

[11]  Chao Zou,et al.  Functional porphyrinic metal-organic frameworks: crystal engineering and applications. , 2012, Dalton transactions.

[12]  A. Vimont,et al.  Infrared Spectroscopy Investigation of the Acid Sites in the Metal–Organic Framework Aluminum Trimesate MIL-100(Al) , 2012 .

[13]  Cheng Wang,et al.  Rational synthesis of noncentrosymmetric metal-organic frameworks for second-order nonlinear optics. , 2012, Chemical reviews.

[14]  Hong-Cai Zhou,et al.  Metal-organic frameworks for separations. , 2012, Chemical reviews.

[15]  Yanfeng Yue,et al.  Luminescent functional metal-organic frameworks. , 2012, Chemical Reviews.

[16]  Kimoon Kim,et al.  Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. , 2012, Chemical reviews.

[17]  Seth M Cohen,et al.  Postsynthetic methods for the functionalization of metal-organic frameworks. , 2012, Chemical reviews.

[18]  Gérard Férey,et al.  Metal-organic frameworks in biomedicine. , 2012, Chemical reviews.

[19]  Yue‐Biao Zhang,et al.  Metal azolate frameworks: from crystal engineering to functional materials. , 2012, Chemical reviews.

[20]  Omar K Farha,et al.  Metal-organic framework materials as chemical sensors. , 2012, Chemical reviews.

[21]  Yoichi M. A. Yamada,et al.  Self-assembled poly(imidazole-palladium): highly active, reusable catalyst at parts per million to parts per billion levels. , 2012, Journal of the American Chemical Society.

[22]  Tianfu Liu,et al.  Palladium Nanoparticles Supported on Mixed-Linker Metal–Organic Frameworks as Highly Active Catalysts for Heck Reactions , 2012 .

[23]  Jacek Klinowski,et al.  Ligand design for functional metal-organic frameworks. , 2012, Chemical Society Reviews.

[24]  A. Corma,et al.  Bridging homogeneous and heterogeneous catalysis with MOFs: Cu-MOFs as solid catalysts for three-component coupling and cyclization reactions for the synthesis of propargylamines, indoles and imidazopyridines , 2012 .

[25]  D. Dybtsev,et al.  Homochiral porous metal-organic coordination polymers: synthesis, structure and functional properties , 2011 .

[26]  Zhangjing Zhang,et al.  Functional mixed metal-organic frameworks with metalloligands. , 2011, Angewandte Chemie.

[27]  Tianfu Liu,et al.  Palladium nanoparticles supported on amino functionalized metal-organic frameworks as highly active catalysts for the Suzuki-Miyaura cross-coupling reaction , 2011 .

[28]  Xinggui Zhou,et al.  Palladium Nanoparticles Confined in the Cages of MIL-101: An Efficient Catalyst for the One-Pot Indole Synthesis in Water , 2011 .

[29]  Freek Kapteijn,et al.  Sulfation of metal–organic frameworks: Opportunities for acid catalysis and proton conductivity , 2011 .

[30]  F. Kapteijn,et al.  Synthesis and Characterization of an Amino Functionalized MIL-101(Al): Separation and Catalytic Properties , 2011 .

[31]  Geoffrey I N Waterhouse,et al.  A general thermolabile protecting group strategy for organocatalytic metal-organic frameworks. , 2011, Journal of the American Chemical Society.

[32]  W. Ahn,et al.  A new heterogeneous catalyst for epoxidation of alkenes via one-step post-functionalization of IRMOF-3 with a manganese(II) acetylacetonate complex. , 2011, Chemical communications.

[33]  C. Serre,et al.  Direct covalent post-synthetic chemical modification of Cr-MIL-101 using nitrating acid. , 2011, Chemical communications.

[34]  Seth M Cohen,et al.  Postsynthetic modification of metal-organic frameworks--a progress report. , 2011, Chemical Society reviews.

[35]  R. Woods,et al.  Spectroscopic characterisation of copper acetohydroxamate and copper n-octanohydroxamate , 2011 .

[36]  A. Corma,et al.  Bridging homogeneous and heterogeneous catalysis with MOFs: “Click” reactions with Cu-MOF catalysts , 2010 .

[37]  Yan Liu,et al.  Engineering Homochiral Metal‐Organic Frameworks for Heterogeneous Asymmetric Catalysis and Enantioselective Separation , 2010, Advanced materials.

[38]  A. Corma,et al.  Cu and Au metal-organic frameworks bridge the gap between homogeneous and heterogeneous catalysts for alkene cyclopropanation reactions. , 2010, Chemistry.

[39]  Huanfeng Jiang,et al.  A highly active heterogeneous palladium catalyst for the Suzuki-Miyaura and Ullmann coupling reactions of aryl chlorides in aqueous media. , 2010, Angewandte Chemie.

[40]  A. Baiker,et al.  Tuning functional sites and thermal stability of mixed-linker MOFs based on MIL-53(Al). , 2010, Dalton transactions.

[41]  A. Corma,et al.  Engineering metal organic frameworks for heterogeneous catalysis. , 2010, Chemical reviews.

[42]  A. Baiker,et al.  MOF-5 based mixed-linker metal–organic frameworks: Synthesis, thermal stability and catalytic application , 2010 .

[43]  Freek Kapteijn,et al.  Building MOF bottles around phosphotungstic acid ships: One-pot synthesis of bi-functional polyoxometalate-MIL-101 catalysts , 2010 .

[44]  Zhigang Xie,et al.  Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery. , 2009, Journal of the American Chemical Society.

[45]  A. Corma,et al.  Gold(III) ― metal organic framework bridges the gap between homogeneous and heterogeneous gold catalysts , 2009 .

[46]  M. Allendorf,et al.  Luminescent metal-organic frameworks. , 2009, Chemical Society reviews.

[47]  Wenbin Lin,et al.  Enantioselective catalysis with homochiral metal-organic frameworks. , 2009, Chemical Society reviews.

[48]  F. Kapteijn,et al.  Amino-based metal-organic frameworks as stable, highly active basic catalysts , 2009 .

[49]  C. Serre,et al.  High-throughput assisted rationalization of the formation of metal organic frameworks in the Iron(III) aminoterephthalate solvothermal system. , 2008, Inorganic chemistry.

[50]  T. Risse,et al.  Gold supported on thin oxide films: from single atoms to nanoparticles. , 2008, Accounts of chemical research.

[51]  M. Rosseinsky,et al.  Framework functionalisation triggers metal complex binding. , 2008, Chemical communications.

[52]  C. Serre,et al.  Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation. , 2008, Angewandte Chemie.

[53]  B. Gates,et al.  Evidence of Active Species in CO Oxidation Catalyzed by Highly Dispersed Supported Gold , 2007 .

[54]  M. Flytzani-Stephanopoulos,et al.  Spectroscopic features and reactivity of CO adsorbed on different Au/CeO2 catalysts , 2007 .

[55]  J. Moulijn,et al.  Role of gold cations in the oxidation of carbon monoxide catalyzed by iron oxide-supported gold , 2006 .

[56]  K. Hadjiivanov,et al.  Comparative study of Au/Al2O3 and Au/CeO2-Al2O3 catalysts , 2006 .

[57]  J. Carrasco,et al.  When the reporter induces the effect: unusual IR spectra of CO on Au1/MgO(001)/Mo(001). , 2006, Angewandte Chemie.

[58]  B. Gates,et al.  Formation of nonclassical carbonyls of Au3+ in zeolite NaY: characterization by infrared spectroscopy. , 2006, The journal of physical chemistry. B.

[59]  C. Serre,et al.  Investigation of acid sites in a zeotypic giant pores chromium(III) carboxylate. , 2006, Journal of the American Chemical Society.

[60]  C. Serre,et al.  A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.

[61]  Hyunuk Kim,et al.  Synthesis, X-ray crystal structures, and gas sorption properties of pillared square grid nets based on paddle-wheel motifs: implications for hydrogen storage in porous materials. , 2005, Chemistry.

[62]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[63]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[64]  J. Bastidas,et al.  An XPS study of copper corrosion originated by formic acid vapour at 40% and 80% relative humidity , 2001 .

[65]  Jinho Oh,et al.  A homochiral metal–organic porous material for enantioselective separation and catalysis , 2000, Nature.

[66]  D. Goodman,et al.  Correlation of Relative X-ray Photoelectron Spectroscopy Shake-up Intensity with CuO Particle Size , 1999 .

[67]  J. Lee,et al.  Infrared spectroscopic study of NO reduction by H2 on supported gold catalysts , 1986 .

[68]  D. A. Shirley,et al.  High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold , 1972 .