Sequential Learning-based IaaS Composition

We propose a novel Infrastructure-as-a-Service composition framework that selects an optimal set of consumer requests according to the provider’s qualitative preferences on long-term service provisions. Decision variables are included in the temporal conditional preference networks to represent qualitative preferences for both short-term and long-term consumers. The global preference ranking of a set of requests is computed using a k -d tree indexing-based temporal similarity measure approach. We propose an extended three-dimensional Q-learning approach to maximize the global preference ranking. We design the on-policy-based sequential selection learning approach that applies the length of request to accept or reject requests in a composition. The proposed on-policy-based learning method reuses historical experiences or policies of sequential optimization using an agglomerative clustering approach. Experimental results prove the feasibility of the proposed framework.

[1]  Zibin Zheng,et al.  A Spatial-Temporal QoS Prediction Approach for Time-aware Web Service Recommendation , 2016, ACM Trans. Web.

[2]  Zibin Zheng,et al.  Integrating Reinforcement Learning with Multi-Agent Techniques for Adaptive Service Composition , 2017, ACM Trans. Auton. Adapt. Syst..

[3]  Thanadech Thanakornworakij,et al.  An Economic Model for Maximizing Profit of a Cloud Service Provider , 2012, 2012 Seventh International Conference on Availability, Reliability and Security.

[4]  Tongquan Wei,et al.  A Survey of Profit Optimization Techniques for Cloud Providers , 2020, ACM Comput. Surv..

[5]  Andrew J. Schaefer,et al.  Modeling Medical Treatment Using Markov Decision Processes , 2005 .

[6]  Athman Bouguettaya,et al.  On-Line Clustering , 1996, IEEE Trans. Knowl. Data Eng..

[7]  Wei Jiang,et al.  Large-Scale Longitudinal Analysis of SOAP-Based and RESTful Web Services , 2012, 2012 IEEE 19th International Conference on Web Services.

[8]  Adelina Gnanlet,et al.  Sequential and Simultaneous Decision Making for Optimizing Health Care Resource Flexibilities , 2009, Decis. Sci..

[9]  Minjie Zhang,et al.  Multi-Objective Service Composition Using Reinforcement Learning , 2013, ICSOC.

[10]  Manuela M. Veloso,et al.  Probabilistic policy reuse in a reinforcement learning agent , 2006, AAMAS '06.

[11]  Sergio Gómez,et al.  Solving Non-Uniqueness in Agglomerative Hierarchical Clustering Using Multidendrograms , 2006, J. Classif..

[12]  Bu-Sung Lee,et al.  Optimization of Resource Provisioning Cost in Cloud Computing , 2012, IEEE Transactions on Services Computing.

[13]  Tao Yu,et al.  Efficient algorithms for Web services selection with end-to-end QoS constraints , 2007, TWEB.

[14]  Athman Bouguettaya,et al.  Signature-based Selection of IaaS Cloud Services , 2020, 2020 IEEE International Conference on Web Services (ICWS).

[15]  Rajkumar Buyya,et al.  Next generation cloud computing: New trends and research directions , 2017, Future Gener. Comput. Syst..

[16]  Fionn Murtagh,et al.  Algorithms for hierarchical clustering: an overview , 2012, WIREs Data Mining Knowl. Discov..

[17]  Qian Zhu,et al.  Resource Provisioning with Budget Constraints for Adaptive Applications in Cloud Environments , 2010, IEEE Transactions on Services Computing.

[18]  YuQi,et al.  Integrating Reinforcement Learning with Multi-Agent Techniques for Adaptive Service Composition , 2017 .

[19]  Luca Maria Gambardella,et al.  Ant-Q: A Reinforcement Learning Approach to the Traveling Salesman Problem , 1995, ICML.

[20]  Naoki Abe,et al.  Sequential cost-sensitive decision making with reinforcement learning , 2002, KDD.

[21]  Hongbin Zha,et al.  Optimizing kd-trees for scalable visual descriptor indexing , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[22]  Yixin Chen,et al.  QoS-Aware Dynamic Composition of Web Services Using Numerical Temporal Planning , 2014, IEEE Transactions on Services Computing.

[23]  David Silver,et al.  Deep Reinforcement Learning with Double Q-Learning , 2015, AAAI.

[24]  Xiang Zhou,et al.  Adaptive Service Composition Based on Reinforcement Learning , 2010, ICSOC.

[25]  Pegah Alizadeh,et al.  Reinforcement Learning for Interactive QoS-Aware Services Composition , 2020 .

[26]  Yike Guo,et al.  Principles of Elastic Processes , 2011, IEEE Internet Computing.

[27]  Andrew W. Moore,et al.  Reinforcement Learning: A Survey , 1996, J. Artif. Intell. Res..

[28]  Jian Yang,et al.  Probabilistic QoS Aggregations for Service Composition , 2016, ACM Trans. Web.

[29]  Daniel Grosu,et al.  Combinatorial Auction-Based Allocation of Virtual Machine Instances in Clouds , 2010, 2010 IEEE Second International Conference on Cloud Computing Technology and Science.

[30]  Xiang Zhou,et al.  WCP-Nets: A Weighted Extension to CP-Nets for Web Service Selection , 2012, ICSOC.

[31]  Athman Bouguettaya,et al.  Long-Term IaaS Selection Using Performance Discovery , 2020, IEEE Transactions on Services Computing.

[32]  Athman Bouguettaya,et al.  Event-based Detection of Changes in IaaS Performance Signatures , 2020, 2020 IEEE International Conference on Services Computing (SCC).

[33]  Bu-Sung Lee,et al.  Capacity planning for data center to support green computing , 2014, 2014 11th International Joint Conference on Computer Science and Software Engineering (JCSSE).

[34]  Thomas Risse,et al.  Combining global optimization with local selection for efficient QoS-aware service composition , 2009, WWW '09.

[35]  Verena Kantere,et al.  An Economic Model for Self-Tuned Cloud Caching , 2009, 2009 IEEE 25th International Conference on Data Engineering.

[36]  Hai Dong,et al.  Metaheuristic Optimization for Long-term IaaS Service Composition , 2018, IEEE Transactions on Services Computing.

[37]  Alan Sussman,et al.  A comparative study of spatial indexing techniques for multidimensional scientific datasets , 2004, Proceedings. 16th International Conference on Scientific and Statistical Database Management, 2004..

[38]  Peter Dayan,et al.  Q-learning , 1992, Machine Learning.

[39]  Kevin Lee,et al.  Empirical prediction models for adaptive resource provisioning in the cloud , 2012, Future Gener. Comput. Syst..

[40]  Athman Bouguettaya,et al.  QoS-Aware Cloud Service Composition Using Time Series , 2013, ICSOC.

[41]  Jordi Torres,et al.  Economic model of a Cloud provider operating in a federated Cloud , 2012, Inf. Syst. Frontiers.

[42]  Athman Bouguettaya,et al.  Long-Term Qualitative IaaS Composition , 2018 .

[43]  Christos Faloutsos,et al.  Multidimensional Access Methods: Trees Have Grown Everywhere , 1997, VLDB.

[44]  Hai Dong,et al.  Economic Models for Managing Cloud Services , 2018, Springer International Publishing.

[45]  Rajkumar Buyya,et al.  Pricing Cloud Compute Commodities: A Novel Financial Economic Model , 2012, 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012).

[46]  Francesca Rossi,et al.  Updates and Uncertainty in CP-Nets , 2013, Australasian Conference on Artificial Intelligence.

[47]  Athman Bouguettaya,et al.  Long-Term IaaS Provider Selection Using Short-Term Trial Experience , 2019, 2019 IEEE International Conference on Web Services (ICWS).

[48]  Abdelkarim Erradi,et al.  Qualitative Economic Model for Long-Term IaaS Composition , 2016, ICSOC.

[49]  Kai Hwang,et al.  Cloud Performance Modeling with Benchmark Evaluation of Elastic Scaling Strategies , 2016, IEEE Transactions on Parallel and Distributed Systems.

[50]  Athman Bouguettaya,et al.  Framework for Web service query algebra and optimization , 2008, TWEB.

[51]  R. Sokal,et al.  THE COMPARISON OF DENDROGRAMS BY OBJECTIVE METHODS , 1962 .

[52]  Pan Hui,et al.  Economic models for cloud service markets: Pricing and Capacity planning , 2013, Theor. Comput. Sci..

[53]  Guy Shani,et al.  An MDP-Based Recommender System , 2002, J. Mach. Learn. Res..

[54]  Heiko Röglin,et al.  Improved Analysis of Complete-Linkage Clustering , 2017, Algorithmica.

[55]  Pavel Berkhin,et al.  A Survey of Clustering Data Mining Techniques , 2006, Grouping Multidimensional Data.

[56]  Rajkumar Buyya,et al.  QoS-aware cloud service composition using eagle strategy , 2019, Future Gener. Comput. Syst..

[57]  Marc G. Bellemare,et al.  Safe and Efficient Off-Policy Reinforcement Learning , 2016, NIPS.

[58]  Athman Bouguettaya,et al.  Web Service Selection with Incomplete or Inconsistent User Preferences , 2009, ICSOC/ServiceWave.

[59]  Reid G. Simmons,et al.  Complexity Analysis of Real-Time Reinforcement Learning , 1993, AAAI.

[60]  Alexandr Andoni,et al.  Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor in High Dimensions , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[61]  Wei Zhao,et al.  Integrating reinforcement learning and skyline computing for adaptive service composition , 2020, Inf. Sci..

[62]  Baochun Li,et al.  Dynamic Cloud Pricing for Revenue Maximization , 2013, IEEE Transactions on Cloud Computing.

[63]  Tao Li,et al.  ASAP: A Self-Adaptive Prediction System for Instant Cloud Resource Demand Provisioning , 2011, 2011 IEEE 11th International Conference on Data Mining.

[64]  Hai Dong,et al.  Long-Term QoS-Aware Cloud Service Composition Using Multivariate Time Series Analysis , 2016, IEEE Transactions on Services Computing.

[65]  Athman Bouguettaya,et al.  Efficient agglomerative hierarchical clustering , 2015, Expert Syst. Appl..

[66]  Sherif Abdelwahed,et al.  QoS Optimization for Cloud Service Composition Based on Economic Model , 2014, IoT360.

[67]  Vasant Honavar,et al.  Web Service Substitution Based on Preferences Over Non-functional Attributes , 2009, 2009 IEEE International Conference on Services Computing.

[68]  Marko Bohanec,et al.  A qualitative multi-attribute model for economic and ecological assessment of genetically modified crops , 2008 .

[69]  Ronen I. Brafman,et al.  CP-nets: A Tool for Representing and Reasoning withConditional Ceteris Paribus Preference Statements , 2011, J. Artif. Intell. Res..

[70]  Athman Bouguettaya,et al.  A CP-Net Based Qualitative Composition Approach for an IaaS Provider , 2018, WISE.

[71]  J. T. Robinson,et al.  The K-D-B-tree: a search structure for large multidimensional dynamic indexes , 1981, SIGMOD '81.

[72]  Athman Bouguettaya,et al.  Economic Model-Driven Cloud Service Composition , 2014, TOIT.

[73]  LiKeqin,et al.  A Survey of Profit Optimization Techniques for Cloud Providers , 2020 .

[74]  F. Lewis,et al.  Reinforcement Learning and Feedback Control: Using Natural Decision Methods to Design Optimal Adaptive Controllers , 2012, IEEE Control Systems.

[75]  V. Rao,et al.  A General Consumer Preference Model for Experience Products: Application to Internet Recommendation Services , 2012 .

[76]  Sheryl E. Kimes,et al.  Restaurant Revenue Management at Chevys: Determining the Best Table Mix , 2004, Decis. Sci..

[77]  Abdelkarim Erradi,et al.  Probabilistic Qualitative Preference Matching in Long-Term IaaS Composition , 2017, ICSOC.

[78]  Nima Jafari Navimipour,et al.  A hybrid formal verification approach for QoS-aware multi-cloud service composition , 2019, Cluster Computing.