Bootstrap mean squared error of a small-area EBLUP

Concerning the estimation of linear parameters in small areas, a nested-error regression model is assumed for the values of the target variable in the units of a finite population. Then, a bootstrap procedure is proposed for estimating the mean squared error (MSE) of the EBLUP under the finite population setup. The consistency of the bootstrap procedure is studied, and a simulation experiment is carried out in order to compare the performance of two different bootstrap estimators with the approximation given by Prasad and Rao [Prasad, N.G.N. and Rao, J.N.K., 1990, The estimation of the mean squared error of small-area estimators. Journal of the American Statistical Association, 85, 163–171.]. In the numerical results, one of the bootstrap estimators shows a better bias behavior than the Prasad–Rao approximation for some of the small areas and not much worse in any case. Further, it shows less MSE in situations of moderate heteroscedasticity and under mispecification of the error distribution as normal when the true distribution is logistic or Gumbel. The proposed bootstrap method can be applied to more general types of parameters (linear of not) and predictors.

[1]  R. N. Kackar,et al.  Approximations for Standard Errors of Estimators of Fixed and Random Effects in Mixed Linear Models , 1984 .

[2]  Tapabrata Maiti,et al.  Nonparametric estimation of mean-squared prediction error in nested-error regression models , 2006 .

[3]  Domingo Morales,et al.  Estimation of the mean squared error of predictors of small area linear parameters under a logistic mixed model , 2007, Comput. Stat. Data Anal..

[4]  Tapabrata Maiti,et al.  On parametric bootstrap methods for small area prediction , 2006 .

[5]  E. Mammen The Bootstrap and Edgeworth Expansion , 1997 .

[6]  Raghu N. Kackar,et al.  Unbiasedness of two-stage estimation and prediction procedures for mixed linear models , 1981 .

[7]  Joseph B. Kadane,et al.  Estimating the Population in a Census Year 1980 and beyond , 1985 .

[8]  Jiming Jiang,et al.  Mixed model prediction and small area estimation , 2006 .

[9]  Rachel M. Harter,et al.  An Error-Components Model for Prediction of County Crop Areas Using Survey and Satellite Data , 1988 .

[10]  Malay Ghosh,et al.  Small Area Estimation: An Appraisal , 1994 .

[11]  Thomas A. Louis,et al.  Small-Area Estimates of School-Age Children in Poverty: Evaluation of Current Methodology , 1997 .

[12]  J. Shao,et al.  The jackknife and bootstrap , 1996 .

[13]  P. Lahiri,et al.  On measures of uncertainty of empirical Bayes small-area estimators , 2003 .

[14]  P. Lahiri,et al.  A UNIFIED MEASURE OF UNCERTAINTY OF ESTIMATED BEST LINEAR UNBIASED PREDICTORS IN SMALL AREA ESTIMATION PROBLEMS , 2000 .

[15]  Jiming Jiang,et al.  A unified jackknife theory for empirical best prediction with M-estimation , 2002 .

[16]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[17]  Jiming Jiang,et al.  Mean squared error of empirical predictor , 2004, math/0406455.

[18]  Domingo Morales,et al.  Analytic and bootstrap approximations of prediction errors under a multivariate Fay-Herriot model , 2008, Comput. Stat. Data Anal..

[19]  R. Royall The Linear Least-Squares Prediction Approach to Two-Stage Sampling , 1976 .

[20]  Changbao Wu,et al.  Jackknife, Bootstrap and Other Resampling Methods in Regression Analysis , 1986 .

[21]  R. Fay,et al.  Estimates of Income for Small Places: An Application of James-Stein Procedures to Census Data , 1979 .

[22]  J. Rao,et al.  The estimation of the mean squared error of small-area estimators , 1990 .

[23]  C. F. Wu JACKKNIFE , BOOTSTRAP AND OTHER RESAMPLING METHODS IN REGRESSION ANALYSIS ' BY , 2008 .

[24]  C. R. Henderson,et al.  Best linear unbiased estimation and prediction under a selection model. , 1975, Biometrics.

[25]  Danny Pfeffermann,et al.  Bootstrap Approximation to Prediction MSE for State–Space Models with Estimated Parameters , 2005 .