Solving a Classical Optimization Problem Using GAMS Optimizer Package: Economic Dispatch Problem Implementation

espanolEn este articulo se presenta una estrategia para modelar y resolver problemas no lineales de optimizacion con estudiantes de pregrado en ingenieria electrica empleando el Sistema de Modelado Algebraico General (GAMS). El problema clasico conocido como despacho economico ha sido seleccionado para mostrar la necesidad de usar herramientas matematicas para resolver problemas de gran tamano relacionados con ingenieria. El despacho economico es un problema clasico de optimizacion en operacion de sistemas termoelectricos, cuya idea principal es encontrar la operacion mas economica para los generadores termicos. Esta operacion esta basada en una curva cuadratica de costos con algunas restricciones operativas, como por ejemplo, balance de potencia y capacidades de generacion. La simulacion numerica es implementada en GAMS usando una version de prueba. Esta investigacion ha sido desarrollada con la ayuda de 36 estudiantes del curso de Regulacion y Operacion de Sistemas Electricos (ROES) del programa de Ingenieria Electrica de la Universidad Tecnologica de Pereira (UTP). EnglishThis paper presents an effectiveness strategy to model and solve nonlinear mathematical optimization problems in electrical engineering using General Algebraic Modeling System (GAMS) for undergraduate students. A classical problem known as economic dispatch has been selected to show the need of using mathematical tools to solve a large scale optimization problem related with engineering. The economic dispatch is a classical optimization problem in operation of thermal electric systems, being the main idea to find an economical operation for thermal generators. This operation is based on a quadratic cost curve with some operating constraints, i.e., power balance and generation capacities. A numerical simulation is implemented using GAMS optimization package in demo version. This research has been developed with the support of 36 students of the course of Regulation and Operation of Electrical Systems (ROES) in the programof Electrical Engineering at Universidad Tecnologica de Pereira (UTP).

[1]  P. Pradhan,et al.  Simulation and optimization of blackstart restoration plan in Bhutan using DIgSILENT , 2015, 2015 2nd International Conference on Recent Advances in Engineering & Computational Sciences (RAECS).

[2]  Juergen Jasperneite,et al.  The Future of Industrial Communication: Automation Networks in the Era of the Internet of Things and Industry 4.0 , 2017, IEEE Industrial Electronics Magazine.

[3]  L. K. Tartibu,et al.  Multi-objective optimization of the stack of a thermoacoustic engine using GAMS , 2015, Appl. Soft Comput..

[4]  Higinio Ramos,et al.  Use of a Symbolic Computation Program to Reinforce the Spatial Abilities of Engineering Students , 2017, IEEE Revista Iberoamericana de Tecnologias del Aprendizaje.

[5]  Joe H. Chow,et al.  A toolbox for power system dynamics and control engineering education and research , 1992 .

[6]  Mohammad Shahidehpour,et al.  Power System Economic Dispatch Considering Steady-State Secure Region for Wind Power , 2017, IEEE Transactions on Sustainable Energy.

[7]  Gabriela Silva-Maceda,et al.  More Time or Better Tools? A Large-Scale Retrospective Comparison of Pedagogical Approaches to Teach Programming , 2016, IEEE Transactions on Education.

[8]  Ananta Srisuphab,et al.  Teaching and learning computational thinking through solving problems in Artificial Intelligence: On designing introductory engineering and computing courses , 2016, 2016 IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE).

[9]  Federico Milano,et al.  An Open Source Power System Virtual Laboratory: The PSAT Case and Experience , 2008, IEEE Transactions on Education.

[10]  Yu Lei,et al.  Study on optimization of radiological worker allocation problem based on nonlinear programming function-fmincon , 2014, 2014 IEEE International Conference on Mechatronics and Automation.

[11]  Andres Fernando Jimenez Lopez,et al.  Teaching Image Processing in Engineering Using Python , 2016, IEEE Revista Iberoamericana de Tecnologias del Aprendizaje.

[12]  J. A. Gonzalez Probabilistic Production Costing Modeled with AMPL , 2002, IEEE Power Engineering Review.

[13]  Enrique Francisco Castillo Ron,et al.  Building and solving mathematical programming models in engineering and science , 2002 .

[14]  Federico Delfino,et al.  Evaluation of Power System Lightning Performance, Part I: Model and Numerical Solution Using the PSCAD-EMTDC Platform , 2017, IEEE Transactions on Electromagnetic Compatibility.

[15]  James W. Cortada,et al.  How Computers Spread Around the World So Fast , 2009 .

[16]  K. Nor,et al.  Multi-thread security constraint economic dispatch with exact loss formulation , 2010, 2010 IEEE International Conference on Power and Energy.

[17]  D. Bica,et al.  Power engineering education using NEPLAN software , 2008, 2008 43rd International Universities Power Engineering Conference.

[18]  S. H. Lui,et al.  Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts , 2011 .

[19]  Joao Tome Saraiva,et al.  Application of the Matlab® Linprog function to plan the short term operation of hydro stations considered as price makers , 2016, 2016 13th International Conference on the European Energy Market (EEM).

[20]  Amin Gholami,et al.  Environmental/economic dispatch incorporating renewable energy sources and plug-in vehicles , 2014 .

[21]  Enrique Castillo,et al.  Building and Solving Mathematical Programming Models in Engineering and Science , 2001 .

[22]  Mary D. Shepherd,et al.  Reading mathematics for understanding—From novice to expert , 2014 .

[23]  D. P. Kothari,et al.  Power system optimization , 2004, 2012 2nd National Conference on Computational Intelligence and Signal Processing (CISP).

[24]  S. Souag,et al.  A quadratic programming optimization for dynamic economic load dispatch: Comparison with GAMS , 2013, 3rd International Conference on Systems and Control.

[25]  C. Enriquez,et al.  Using robot to motivate computational thinking in high school students , 2016, IEEE Latin America Transactions.

[26]  V. Fernão Pires,et al.  Teaching nonlinear modeling, simulation, and control of electronic power converters using MATLAB/SIMULINK , 2002, IEEE Trans. Educ..

[27]  George L. Donohue Undergraduate use of complex simulation tools for airspace design , 2003, Comput. Sci. Eng..

[28]  Pedro Abreu,et al.  Types of assessing student-programming knowledge , 2016, 2016 IEEE Frontiers in Education Conference (FIE).

[29]  Massood Towhidnejad,et al.  Work in progress: Teaching computational thinking in middle and high school , 2012, 2012 Frontiers in Education Conference Proceedings.

[30]  Jaana Holvikivi,et al.  Logical Reasoning Ability in Engineering Students: A Case Study , 2007, IEEE Transactions on Education.

[31]  Trinnapop Boonseng,et al.  Dynamic railway simulation using DIgSILENT programming language , 2016, 2016 19th International Conference on Electrical Machines and Systems (ICEMS).

[32]  Hongbo Zhu,et al.  Smart service system(SSS): A novel architecture enabling coordination of heterogeneous networking technologies and devices for Internet of Things , 2017, China Communications.

[33]  Levent Burak Kara,et al.  Computer tutors can address students learning to solve complex engineering problems , 2014, 2014 IEEE Frontiers in Education Conference (FIE) Proceedings.

[34]  Gerard H. Gaynor Solving Problems , 2016, IEEE Engineering Management Review.

[35]  Mitchel Resnick,et al.  The Computer Clubhouse: Preparing for Life in a Digital World , 1996, IBM Syst. J..

[36]  Wadaed Uturbey,et al.  Dynamic optimal power flow approach to account for consumer response in short term hydrothermal coordination studies , 2007 .

[37]  Yu Hua,et al.  On the solution of operator equation problems with application to Preisach density estimation , 2016, 2016 American Control Conference (ACC).

[38]  Thokozani Majozi,et al.  GAMS supported optimization and predictability study of a multi-objective adsorption process with conflicting regions of optimal operating conditions , 2016, Comput. Chem. Eng..

[39]  Baoyou Liu,et al.  An application of lingo software to solve dynamic programming problem in the field of environmental protection , 2015, 2015 IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC).