Highly Strained III–V–V Coaxial Nanowire Quantum Wells with Strong Carrier Confinement

Coaxial quantum wells (QWs) are ideal candidates for nanowire (NW) lasers, providing strong carrier confinement and allowing close matching of the cavity mode and gain medium. We report a detailed structural and optical study and the observation of lasing for a mixed group-V GaAsP NW with GaAs QWs. This system offers a number of potential advantages in comparison to previously studied common group-V structures (e.g., AlGaAs/GaAs) including highly strained binary GaAs QWs, the absence of a lower band gap core region, and deep carrier potential wells. Despite the large lattice mismatch (∼1.7%), it is possible to grow defect-free GaAs coaxial QWs with high optical quality. The large band gap difference results in strong carrier confinement, and the ability to apply a high degree of compressive strain to the GaAs QWs is also expected to be beneficial for laser performance. For a non-fully optimized structure containing three QWs, we achieve low-temperature lasing with a low external (internal) threshold of 20 (0.9) μJ/cm2/pulse. In addition, a very narrow lasing line width of ∼0.15 nm is observed. These results extend the NW laser structure to coaxial III–V–V QWs, which are highly suitable as the platform for NW emitters.

[1]  Kelly P. Knutsen,et al.  Single gallium nitride nanowire lasers , 2002, Nature materials.

[2]  I. Buyanova,et al.  Dilute Nitride Nanowire Lasers Based on a GaAs/GaNAs Core/Shell Structure. , 2017, Nano letters.

[3]  Bryan M. Wong,et al.  Optical, structural, and numerical investigations of GaAs/AlGaAs core-multishell nanowire quantum well tubes. , 2013, Nano letters.

[4]  Xiangfeng Duan,et al.  Highly Polarized Photoluminescence and Photodetection from Single Indium Phosphide Nanowires , 2001, Science.

[5]  Hyunseok Kim,et al.  Monolithic InGaAs Nanowire Array Lasers on Silicon-on-Insulator Operating at Room Temperature. , 2017, Nano letters.

[6]  Yong Ding,et al.  Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. , 2008, Nature materials.

[7]  H. Tan,et al.  Growth mechanism of truncated triangular III-V nanowires. , 2007, Small.

[8]  K. Kavanagh,et al.  Misfit dislocations in nanowire heterostructures , 2010 .

[9]  Takashi Fukui,et al.  Sub 60 mV/decade switch using an InAs nanowire-Si heterojunction and turn-on voltage shift with a pulsed doping technique. , 2013, Nano letters.

[10]  Chennupati Jagadish,et al.  Influence of nanowire density on the shape and optical properties of ternary InGaAs nanowires. , 2006, Nano letters.

[11]  Z. Mi,et al.  Ultralow-threshold electrically injected AlGaN nanowire ultraviolet lasers on Si operating at low temperature. , 2015, Nature nanotechnology.

[12]  G. Abstreiter,et al.  Lasing from individual GaAs-AlGaAs core-shell nanowires up to room temperature , 2013, Nature Communications.

[13]  L. F. Tiemeijer,et al.  Progress in long-wavelength strained-layer InGaAs(P) quantum-well semiconductor lasers and amplifiers , 1994 .

[14]  P. Vogl,et al.  nextnano: General Purpose 3-D Simulations , 2007, IEEE Transactions on Electron Devices.

[15]  Jerry R. Meyer,et al.  Band parameters for III–V compound semiconductors and their alloys , 2001 .

[16]  Chennupati Jagadish,et al.  Emergence of localized states in narrow GaAs/AlGaAs nanowire quantum well tubes. , 2015, Nano letters.

[17]  Z. Mi,et al.  Controlling electron overflow in phosphor-free InGaN/GaN nanowire white light-emitting diodes. , 2012, Nano letters.

[18]  Chennupati Jagadish,et al.  Large-Scale Statistics for Threshold Optimization of Optically Pumped Nanowire Lasers. , 2017, Nano letters.

[19]  P. Yang Nanowire Photonics , 2007, 2007 International Nano-Optoelectronics Workshop.

[20]  H. Shtrikman,et al.  InAs/GaAs Core–Shell Nanowires , 2011 .

[21]  J. Etheridge,et al.  Quantum Confined Stark Effect in a GaAs/AlGaAs Nanowire Quantum Well Tube Device: Probing Exciton Localization. , 2015, Nano letters.

[22]  G. Abstreiter,et al.  Coaxial GaAs-AlGaAs core-multishell nanowire lasers with epitaxial gain control , 2016 .

[23]  Chennupati Jagadish,et al.  Electronic properties of GaAs, InAs and InP nanowires studied by terahertz spectroscopy , 2013, Nanotechnology.

[24]  Huiyun Liu,et al.  Self-catalyzed GaAsP nanowires grown on silicon substrates by solid-source molecular beam epitaxy. , 2013, Nano letters.

[25]  G. E. Stillman,et al.  Hall coefficient factor for polar mode scattering in n-type GaAs☆ , 1970 .

[26]  H. Tan,et al.  Strong Amplified Spontaneous Emission from High Quality GaAs1–xSbx Single Quantum Well Nanowires , 2017 .

[27]  Charles M. Lieber,et al.  Single-nanowire electrically driven lasers , 2003, Nature.

[28]  M. Ramsteiner,et al.  Coaxial multishell (In,Ga)As/GaAs nanowires for near-infrared emission on Si substrates. , 2014, Nano letters.

[29]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[30]  Pallab Bhattacharya,et al.  Monolithic electrically injected nanowire array edge-emitting laser on (001) silicon. , 2014, Nano letters.

[31]  Yasuhiko Arakawa,et al.  Room-temperature lasing in a single nanowire with quantum dots , 2015 .

[32]  Gerhard Abstreiter,et al.  Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy , 2008 .

[33]  C. Chang-Hasnain,et al.  Core-shell InGaAs/GaAs quantum well nanoneedles grown on silicon with silicon-transparent emission. , 2009, Optics express.

[34]  Z. Mi,et al.  An electrically injected AlGaN nanowire laser operating in the ultraviolet-C band , 2015 .

[35]  Yasuhiko Arakawa,et al.  Room-temperature lasing in a single nanowire with quantum dots , 2015, Nature Photonics.

[36]  X. Ren,et al.  Evanescent-wave pumped room-temperature single-mode GaAs/AlGaAs core-shell nanowire lasers , 2014 .

[37]  James A. Gott,et al.  Stable Defects in Semiconductor Nanowires. , 2018, Nano letters.

[38]  Miles V. Klein,et al.  Growth and properties of GaAs/AlGaAs on nonpolar substrates using molecular beam epitaxy , 1985 .

[39]  Huiyun Liu,et al.  Influence of Droplet Size on the Growth of Self-Catalyzed Ternary GaAsP Nanowires. , 2016, Nano letters.

[40]  G. N. Malheiros-Silveira,et al.  Site-Controlled Growth of Monolithic InGaAs/InP Quantum Well Nanopillar Lasers on Silicon. , 2017, Nano letters.

[41]  Huiyun Liu,et al.  Growth of Pure Zinc-Blende GaAs(P) Core-Shell Nanowires with Highly Regular Morphology. , 2017, Nano letters.

[42]  H. Amano,et al.  MBE–VLS growth of catalyst-free III–V axial heterostructure nanowires on (1 1 1)Si substrates , 2011 .

[43]  Di Liang,et al.  Recent progress in lasers on silicon , 2010 .

[44]  Takashi Fukui,et al.  Single GaAs/GaAsP coaxial core-shell nanowire lasers. , 2009, Nano letters.

[45]  Y. Ota,et al.  A Nanowire-Based Plasmonic Quantum Dot Laser. , 2016, Nano letters.

[46]  Bong-Joong Kim,et al.  Observation and tunability of room temperature photoluminescence of GaAs/GaInAs core-multiple-quantum-well shell nanowire structure grown on Si (100) by molecular beam epitaxy , 2014, Nanoscale Research Letters.

[47]  Chennupati Jagadish,et al.  Transfer Printing of Semiconductor Nanowires with Lasing Emission for Controllable Nanophotonic Device Fabrication. , 2016, ACS nano.

[48]  Chennupati Jagadish,et al.  Design and Room-Temperature Operation of GaAs/AlGaAs Multiple Quantum Well Nanowire Lasers. , 2016, Nano letters.

[49]  H. Tan,et al.  Optically pumped room-temperature GaAs nanowire lasers , 2013, Nature Photonics.

[50]  Huiyun Liu,et al.  Self-catalyzed ternary core-shell GaAsP nanowire arrays grown on patterned Si substrates by molecular beam epitaxy. , 2014, Nano letters.

[51]  Hai Lu,et al.  Vertically Emitting Indium Phosphide Nanowire Lasers. , 2018, Nano letters.

[52]  I. Luxmoore,et al.  Effect of a GaAsP shell on the optical properties of self-catalyzed GaAs nanowires grown on silicon. , 2012, Nano letters.

[53]  L. Lauhon,et al.  Tuning Lasing Emission toward Long Wavelengths in GaAs-(In,Al)GaAs Core-Multishell Nanowires. , 2018, Nano letters.

[54]  Jordi Arbiol,et al.  Group-III assisted catalyst-free growth of InGaAs nanowires and the formation of quantum dots , 2010 .

[55]  Rachel Won,et al.  Integrating silicon photonics , 2010 .