Shape Dependent Structural Stability, Electronic and Optical Properties of CdO Nanowire

Structural stability, electronic and optical properties of CdO bulk and different shaped nanowires have been investigated through spin polarized generalized gradient approximation (SGGA) and spin polarized Meta generalized gradient approximation (SMGGA) based density functional theory approach. Structure stability identified in terms of total energy minimization, binding energy and bond length. Among all the considered geometries of CdO, bulk structure shows the highest band gap 2.43 eV in SMGGA and decreases from linear shape nanowire → cube shape nanowire. Optical properties of CdO bulk as well as nanowires have also been analyzed through computation of dielectric function.

[1]  Xiaogang Peng,et al.  Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. , 2002, Journal of the American Chemical Society.

[2]  Jiangtao Hu,et al.  Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires , 1999, Nature.

[3]  L. Canham Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers , 1990 .

[4]  Yingkai Zhang,et al.  Comment on “Generalized Gradient Approximation Made Simple” , 1998 .

[5]  J. Devreese,et al.  Highly conducting one-dimensional solids , 1979 .

[6]  M. Fox Optical Properties of Solids , 2010 .

[7]  N. Tyagi,et al.  Structural and electronic properties of AlX (X = P, As, Sb) nanowires: Ab initio study , 2012 .

[8]  Yasuhiko Arakawa,et al.  Quantum well lasers--Gain, spectra, dynamics , 1986 .

[9]  Herbert Shea,et al.  Single- and multi-wall carbon nanotube field-effect transistors , 1998 .

[10]  Charles M. Lieber,et al.  One-dimensional nanostructures: Chemistry, physics & applications , 1998 .

[11]  Jian Wang,et al.  Ab initio modeling of quantum transport properties of molecular electronic devices , 2001 .

[12]  C. Dekker Carbon nanotubes as molecular quantum wires , 1999 .

[13]  P. Ordejón,et al.  Density-functional method for nonequilibrium electron transport , 2001, cond-mat/0110650.

[14]  M. Dresselhaus,et al.  Thermoelectric figure of merit of a one-dimensional conductor. , 1993, Physical review. B, Condensed matter.

[15]  Yu Huang,et al.  Indium Phosphide Nanowires as Building Blocks for Nanoscale Electronic and Optoelectronic Devices. , 2001 .

[16]  H. Sakaki,et al.  Multidimensional quantum well laser and temperature dependence of its threshold current , 1982 .

[17]  Alexander A. Balandin,et al.  Phonon heat conduction in a semiconductor nanowire , 2001 .

[18]  Zhen Yao,et al.  Carbon nanotube intramolecular junctions , 1999, Nature.

[19]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0111138.

[20]  D. R. Penn,et al.  Wave-Number-Dependent Dielectric Function of Semiconductors , 1962 .

[21]  R. Ahuja,et al.  First-principles study of structural and electronic properties of gallium based nanowires , 2013 .

[22]  Y. Suzuki,et al.  Characteristics of the ground-state lasing operation in V-groove quantum-wire lasers , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[23]  Masahiro Asada,et al.  Threshold current density of GaInAsP/InP quantum-box lasers , 1989 .

[24]  Kang L. Wang,et al.  Enhancement of the thermoelectric figure of merit of Si1−xGex quantum wires due to spatial confinement of acoustic phonons , 2000 .

[25]  D. R. Hamann,et al.  Pseudopotentials that work: From H to Pu , 1982 .

[26]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .

[27]  Paul L. McEuen,et al.  Single-Electron Transport in Ropes of Carbon Nanotubes , 1997, Science.

[28]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[29]  S. Marshall,et al.  Substantial contribution to sea-level rise during the last interglacial from the Greenland ice sheet , 2000, Nature.

[30]  S. Musić,et al.  Formation and properties of Cd(OH)2 and CdO particles , 2004 .

[31]  Yoon,et al.  Crossed nanotube junctions , 2000, Science.

[32]  Weidong Yang,et al.  Shape control of CdSe nanocrystals , 2000, Nature.

[33]  H. Dai,et al.  Individual single-wall carbon nanotubes as quantum wires , 1997, Nature.

[34]  Igor L. Medintz,et al.  Quantum dot bioconjugates for imaging, labelling and sensing , 2005, Nature materials.

[35]  P. Ordejón,et al.  TranSIESTA: A Spice for Molecular Electronics , 2003, Annals of the New York Academy of Sciences.

[36]  N. Tyagi,et al.  Structural and electronic properties of lead nanowires: Ab-initio study , 2011 .

[37]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[38]  K. Johnston,et al.  Control of thickness and orientation of solution-grown silicon nanowires , 2000, Science.

[39]  R. Dreizler,et al.  Density-Functional Theory , 1990 .

[40]  P. Blaha,et al.  Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. , 2009, Physical review letters.

[41]  M. Orio,et al.  Density functional theory , 2009, Photosynthesis Research.