Dynamic Semiparametric Models for Expected Shortfall (and Value-At-Risk)

Expected Shortfall (ES) is the average return on a risky asset conditional on the return being below some quantile of its distribution, namely its Value-at-Risk (VaR). The Basel III Accord, which will be implemented in the years leading up to 2019, places new attention on ES, but unlike VaR, there is little existing work on modeling ES. We use recent results from statistical decision theory to overcome the problem of "elicitability" for ES by jointly modelling ES and VaR, and propose new dynamic models for these risk measures. We provide estimation and inference methods for the proposed models, and confirm via simulation studies that the methods have good finite-sample properties. We apply these models to daily returns on four international equity indices, and find the proposed new ES-VaR models outperform forecasts based on GARCH or rolling window models.

[1]  J. Davidson Stochastic Limit Theory: An Introduction for Econometricians , 1994 .

[2]  F. Diebold,et al.  Comparing Predictive Accuracy , 1994, Business Cycles.

[3]  Benedikt M. Pötscher,et al.  A UNIFORM LAW OF LARGE NUMBERS FOR DEPENDENT AND HETEROGENEOUS DATA PROCESSES , 1989 .

[4]  James W. Taylor Estimating Value at Risk and Expected Shortfall Using Expectiles , 2007 .

[5]  Johanna F. Ziegel,et al.  Elicitability and backtesting: Perspectives for banking regulation , 2016, 1608.05498.

[6]  Sander Barendse Efficiently Weighted Estimation of Tail and Interquantile Expectations , 2017 .

[7]  Ivana Komunjer,et al.  Quasi-maximum likelihood estimation for conditional quantiles , 2005 .

[8]  Andrew J. Patton Volatility Forecast Comparison Using Imperfect Volatility Proxies , 2006 .

[9]  Johanna F. Ziegel,et al.  Higher order elicitability and Osband’s principle , 2015, 1503.08123.

[10]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[11]  Dongming Zhu,et al.  Modeling and forecasting expected shortfall with the generalized asymmetric Student-t and asymmetric exponential power distributions , 2011 .

[12]  Cathy W. S. Chen,et al.  Bayesian Expected Shortfall Forecasting Incorporating the Intraday Range , 2014 .

[13]  W. Newey,et al.  Large sample estimation and hypothesis testing , 1986 .

[14]  S. Koopman,et al.  Predicting Time-Varying Parameters with Parameter-Driven and Observation-Driven Models , 2012 .

[15]  P. Hall,et al.  Martingale Limit Theory and Its Application , 1980 .

[16]  Zongwu Cai,et al.  Nonparametric estimation of conditional VaR and expected shortfall , 2008 .

[17]  Xiaohong Chen,et al.  MIXING AND MOMENT PROPERTIES OF VARIOUS GARCH AND STOCHASTIC VOLATILITY MODELS , 2002, Econometric Theory.

[18]  Drew D. Creal,et al.  Generalized autoregressive score models with applications ∗ , 2010 .

[19]  Zaichao Du,et al.  Backtesting Expected Shortfall: Accounting for Tail Risk , 2015, Manag. Sci..

[20]  Andrew Harvey,et al.  Dynamic Models for Volatility and Heavy Tails , 2013 .

[21]  P. J. Huber The behavior of maximum likelihood estimates under nonstandard conditions , 1967 .

[22]  James W. Taylor Forecasting Value at Risk and Expected Shortfall Using a Semiparametric Approach Based on the Asymmetric Laplace Distribution , 2019 .

[23]  D. Andrews CONSISTENCY IN NONLINEAR ECONOMETRIC MODELS: A GENERIC UNIFORM LAW OF LARGE NUMBERS , 1987 .

[24]  R. Lumsdaine,et al.  Consistency and Asymptotic Normality of the Quasi-maximum Likelihood Estimator in IGARCH(1,1) and Covariance Stationary GARCH(1,1) Models , 1996 .

[25]  H. Holzmann,et al.  Asymptotics for the expected shortfall , 2016, 1611.07222.

[26]  B. Hansen Autoregressive Conditional Density Estimation , 1994 .

[27]  J. Wooldridge,et al.  Quasi-maximum likelihood estimation and inference in dynamic models with time-varying covariances , 1992 .

[28]  F. Diebold,et al.  VOLATILITY AND CORRELATION FORECASTING , 2006 .

[29]  W. Newey,et al.  Asymmetric Least Squares Estimation and Testing , 1987 .

[30]  Christian Francq,et al.  Risk-parameter estimation in volatility models , 2012 .

[31]  Andrew A. Weiss,et al.  Estimating Nonlinear Dynamic Models Using Least Absolute Error Estimation , 1991, Econometric Theory.

[32]  Kevin Sheppard,et al.  Evaluating Volatility and Correlation Forecasts , 2009 .

[33]  Jeffrey R. Russell,et al.  Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data , 1998 .

[34]  Dobrislav Dobrev,et al.  Accurate Evaluation of Expected Shortfall for Linear Portfolios with Elliptically Distributed Risk Factors , 2017 .

[35]  T. Gneiting Making and Evaluating Point Forecasts , 2009, 0912.0902.

[36]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[37]  Eric Jondeau,et al.  Conditional volatility, skewness, and kurtosis: existence, persistence, and comovements , 2003 .

[38]  Peter F. Christoffersen Evaluating Interval Forecasts , 1998 .

[39]  Timo Dimitriadis,et al.  A joint quantile and expected shortfall regression framework , 2017, Electronic Journal of Statistics.