Matchmaker: manifold BReps for non-manifold r-sets

Many modeling techniques produce non-manifold solids. A non-manifold model N may be approximated by a manifold model M that is infinitely close to N in the geometric sense. M may be derived by replicating and bending the non-manifold edges of N (this produces an edge-manifold model) and then by replicating the remaining non-manifold vertices and moving them slightly apart. Although inconsistent, the connectivity of M and the geometry of N may be combined in a pseudo-manifold representation of N, which exhibits space and performance advantages for many popular applications, especially when N is a triangulated polyhedron. The Matchmaker algorithm introduced here matches pairs of adjacent faces of N and produces an edge-manifold topology with 5 to IO times fewer non-manifold vertices than N.

[1]  Requicha,et al.  Solid Modeling: A Historical Summary and Contemporary Assessment , 1982, IEEE Computer Graphics and Applications.

[2]  Martin Held,et al.  Evaluation of Collision Detection Methods for Virtual Reality Fly-Throughs , 1995 .

[3]  Gabriel Taubin,et al.  Converting sets of polygons to manifold surfaces by cutting and stitching , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[4]  William S. Massey,et al.  Algebraic Topology: An Introduction , 1977 .

[5]  Michael Deering,et al.  Geometry compression , 1995, SIGGRAPH.

[6]  Tony C. Woo,et al.  A Combinatorial Analysis of Boundary Data Structure Schemata , 1985, IEEE Computer Graphics and Applications.

[7]  Aristides A. G. Requicha,et al.  Solid modeling and beyond , 1992, IEEE Computer Graphics and Applications.

[8]  Alyn P. Rockwood,et al.  Real-time rendering of trimmed surfaces , 1989, SIGGRAPH.

[9]  Craig Gotsman,et al.  Triangle Mesh Compression , 1998, Graphics Interface.

[10]  Martti Mäntylä,et al.  Introduction to Solid Modeling , 1988 .

[11]  Paul S. Heckbert,et al.  Survey of Polygonal Surface Simplification Algorithms , 1997 .

[12]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[13]  Neil F. Stewart,et al.  An extension of manifold boundary representations to the r-sets , 1992, TOGS.

[14]  Christoph M. Hoffmann,et al.  Geometric and Solid Modeling: An Introduction , 1989 .

[15]  Martti Mäntylä,et al.  Boolean operations of 2-manifolds through vertex neighborhood classification , 1986, TOGS.

[16]  Young Choi,et al.  Boolean set operations on non-manifold boundary representation objects , 1991, Comput. Aided Des..

[17]  Jarek Rossignac,et al.  Edgebreaker: Connectivity Compression for Triangle Meshes , 1999, IEEE Trans. Vis. Comput. Graph..

[18]  J. Rossignac Edgebreaker: Compressing the incidence graph of triangle meshes , 1998 .

[19]  Gabriel Taubin,et al.  Progressive forest split compression , 1998, SIGGRAPH.

[20]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[21]  Wolfgang Straßer,et al.  Real time compression of triangle mesh connectivity , 1998, SIGGRAPH.

[22]  Mike M. Chow,et al.  Optimized geometry compression for real-time rendering , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[23]  Jarek Rossignac,et al.  Through the Cracks of the Solid Modeling Milestone , 1994 .

[24]  H. Voelcker,et al.  Solid modeling: current status and research directions , 1983, IEEE Computer Graphics and Applications.

[25]  Kokichi Sugihara,et al.  A solid modelling system free from topological inconsistency , 1990 .

[26]  Kevin Weiler Topological Structures for Geometric Modeling , 1986 .

[27]  T. M. Murali,et al.  Consistent solid and boundary representations from arbitrary polygonal data , 1997, SI3D.

[28]  Mark Segal,et al.  Using tolerances to guarantee valid polyhedral modeling results , 1990, SIGGRAPH.

[29]  Robert B. Tilove,et al.  Set Membership Classification: A Unified Approach to Geometric Intersection Problems , 1980, IEEE Transactions on Computers.

[30]  A.A.G. Requicha,et al.  Boolean operations in solid modeling: Boundary evaluation and merging algorithms , 1985, Proceedings of the IEEE.

[31]  Hugues Hoppe,et al.  View-dependent refinement of progressive meshes , 1997, SIGGRAPH.

[32]  Bruce G. Baumgart Winged edge polyhedron representation. , 1972 .

[33]  共立出版株式会社 コンピュータ・サイエンス : ACM computing surveys , 1978 .

[34]  Gabriel Taubin,et al.  Geometric compression through topological surgery , 1998, TOGS.

[35]  ARISTIDES A. G. REQUICHA,et al.  Representations for Rigid Solids: Theory, Methods, and Systems , 1980, CSUR.

[36]  Jarek Rossignac,et al.  AGRELs and BIPs: Metamorphosis as a Bezier curve in the space of polyhedra , 1994, Comput. Graph. Forum.

[37]  K. Preiss,et al.  A review of solid shape modelling based on integrity verification , 1984 .

[38]  Jarek Rossignac Structured topological complexes: a feature-based API for non-manifold topologies , 1997, SMA '97.

[39]  Rémi Ronfard,et al.  Full‐range approximation of triangulated polyhedra. , 1996, Comput. Graph. Forum.

[40]  Dinesh Manocha,et al.  OBBTree: a hierarchical structure for rapid interference detection , 1996, SIGGRAPH.

[41]  Jarek Rossignac,et al.  Topologically exact evaluation of polyhedra defined in CSG with loose primitives , 1996, Comput. Graph. Forum.

[42]  Steven Skiena,et al.  Optimizing triangle strips for fast rendering , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[43]  Kevin Weiler,et al.  Edge-Based Data Structures for Solid Modeling in Curved-Surface Environments , 1985, IEEE Computer Graphics and Applications.

[44]  P. S. Aleksandrov,et al.  Elementary concepts of topology , 1961 .

[45]  Dean L. Taylor,et al.  A theorem to determine the spatial containment of a point in a planar polyhedron , 1989, Comput. Vis. Graph. Image Process..

[46]  Mike M. Chow Optimized geometry compression for real-time rendering , 1997 .

[47]  Yehuda E. Kalay The hybrid edge: a topological data structure for vertically integrated geometric modelling , 1989 .