Comparing Direct and Indirect Thrust Measurements from Passively Fed Ionic Electrospray Thrusters

Highly ionic beams of several hundred microampere per squared centimeter have been measured from porous glass ionic liquid electrospray sources fabricated using a conventional mill. The thrust output from three prototype devices, two emitting the ionic liquid 1-ethyl-3-methylimidazolium-bis(trifluoromethylsulfonyl)imide and one emitting 1-ethyl-3-methylimidazolium-tetrafluoroborate, was measured directly using a precise balance. Thrusts up to 50  μN were measured when emitting 1-ethyl-3-methylimidazolium-bis(trifluoromethylsulfonyl)imide in a bipolar, alternating potential configuration at less than 0.8 W input power and with propellant supplied from an internal reservoir. Measurements of mass spectra via time-of-flight spectrometry, angle resolved current distributions, ion fragmentation, and energy deficits have been applied to accurately calculate thrust and mass flow rates indirectly from the same devices. For two of the three cases, calculated and directly measured thrusts were in agreement to within...

[1]  Timothy P. Fedkiw,et al.  Characterization of an iodine-based ionic liquid ion source and studies on ion fragmentation , 2010 .

[2]  Robert S. Legge,et al.  Electrospray Propulsion Based on Emitters Microfabricated in Porous Metals , 2011 .

[3]  J. R. Shell,et al.  Optimizing the energy resolution of planar retarding potential analyzers , 1992 .

[4]  L. B. King,et al.  Electrospray from an Ionic Liquid Ferrofluid utilizing the Rosensweig Instability , 2013 .

[5]  Hanqing Li,et al.  Electrochemical Micromachining on Porous Nickel for Arrays of Electrospray Ion Emitters , 2013, Journal of Microelectromechanical Systems.

[6]  Bob Stevens,et al.  Fabrication and operation of microfabricated emitters as components for a colloid thruster , 2005 .

[7]  Caglar Ataman,et al.  MICROFABRICATION OF AN ELECTROSPRAY THRUSTER FOR SMALL SPACECRAFT , 2012 .

[8]  Development of a multiplexed electrospray micro-thruster with post-acceleration and beam containment , 2013 .

[9]  Geoffrey Ingram Taylor,et al.  Disintegration of water drops in an electric field , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[10]  Herbert Shea,et al.  Integrated out-of-plane nanoelectrospray thruster arrays for spacecraft propulsion , 2009 .

[11]  Simon Dandavino Microfabricated Electrospray Thrusters for a Modular Spacecraft Propulsion System , 2014 .

[12]  Mark A. Reed,et al.  Increase of electrospray throughput using multiplexed microfabricated sources for the scalable generation of monodisperse droplets , 2006 .

[13]  Paulo Lozano,et al.  Development and characterization of an iodine field emission ion source for focused ion beam applications , 2009 .

[14]  C. Enke,et al.  Electrochemical processes in electrospray ionization mass spectrometry , 2000, Journal of mass spectrometry : JMS.

[15]  P. Lozano,et al.  Characterization of Conical Ionic Liquid Ion Sources for 2-D Electrospray Thruster Arrays on Porous Substrates , 2010 .

[16]  Paulo Lozano,et al.  The role of upstream distal electrodes in mitigating electrochemical degradation of ionic liquid ion sources , 2012 .

[17]  Paulo Lozano,et al.  Ionic liquid ion sources: suppression of electrochemical reactions using voltage alternation. , 2004, Journal of colloid and interface science.

[18]  Manuel Gamero-Castaño,et al.  Electrospray as a source of nanoparticles for efficient colloid thrusters , 2000 .

[19]  B. Prince,et al.  Molecular dynamics simulations of 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide clusters and nanodrops. , 2015, The journal of physical chemistry. A.

[20]  J. F. D. L. Mora,et al.  Effect of tip curvature on ionic emissions from Taylor cones of ionic liquids from externally wetted tungsten tips , 2009 .

[21]  R. Hagiwara,et al.  Taylor Cones of Ionic Liquids as Ion Sources: The Role of Electrical Conductivity and Surface Tension , 2008 .

[22]  Arthur Y. Yahiku,et al.  Research and development of a charged-particle bipolar thruster. , 1969 .

[23]  Stephen M. Merkowitz,et al.  Microthrust Propulsion of the LISA Mission , 2004 .

[24]  Caglar Ataman,et al.  Experimental progress towards the MicroThrust MEMS electrospray electric propulsion system , 2013 .

[25]  Salvo Marcuccio,et al.  Slit FEEP Thruster Performance with Ionic Liquid Propellant , 2013 .

[26]  J. Fernández-García,et al.  Search for liquids electrospraying the smallest possible nanodrops in vacuo , 2014 .

[27]  Paulo Lozano,et al.  Energy properties of an EMI-Im ionic liquid ion source , 2006 .

[28]  D. Levandier,et al.  Vacuum electrospray ionization study of the ionic liquid, [Emim][Im] , 2007 .

[29]  Paulo Lozano,et al.  Electrospray emission from nonwetting flat dielectric surfaces. , 2004, Journal of colloid and interface science.

[30]  Paulo Lozano,et al.  Emission measurements from planar arrays of porous ionic liquid ion sources , 2012 .

[31]  Manuel Martinez-Sanchez,et al.  Efficiency Estimation of EMI-BF 4 Ionic Liquid Electrospray Thrusters , 2005 .

[32]  Juergen Mueller,et al.  Survey of Propulsion Technologies Applicable to Cubesats , 2010 .

[33]  Vadim Khayms,et al.  Advanced propulsion for microsatellites , 2000 .

[34]  Roy Martin,et al.  Colloid Micro-Newton Thrusters for the space technology 7 mission , 2010, 2010 IEEE Aerospace Conference.

[35]  Paulo Lozano,et al.  Studies on the Ion-Droplet Mixed Regime in Colloid Thrusters , 2003 .

[36]  Noah Zachary Warner,et al.  Theoretical and experimental investigation of Hall thruster miniaturization , 2007 .

[37]  Daniel G. Courtney,et al.  Ionic liquid ion source emitter arrays fabricated on bulk porous substrates for spacecraft propulsion , 2011 .

[38]  Herbert Shea,et al.  Tailoring the hydraulic impedance of out-of-plane micromachined electrospray sources with integrated electrodes , 2009 .

[39]  Paulo Lozano,et al.  Progress Toward a Variable Specific Impulse Electrospray Propulsion System , 2011 .

[40]  Manuel Gamero-Castaño,et al.  Source of heavy molecular ions based on Taylor cones of ionic liquids operating in the pure ion evaporation regime , 2003 .

[41]  Caglar Ataman,et al.  Microfabricated electrospray emitter arrays with integrated extractor and accelerator electrodes for the propulsion of small spacecraft , 2014 .

[42]  Paulo Lozano,et al.  Ionic liquid ion sources: characterization of externally wetted emitters. , 2005, Journal of colloid and interface science.

[43]  M. Martinez-Sanchez,et al.  A Microfabricated Planar Electrospray Array Ionic Liquid Ion Source With Integrated Extractor , 2009, Journal of Microelectromechanical Systems.