ROBO4 Variants Predispose Individuals to Bicuspid Aortic Valve and Thoracic Aortic Aneurysm

[1]  D. Zack,et al.  grID: A CRISPR-Cas9 guide RNA Database and Resource for Genome-Editing , 2016, bioRxiv.

[2]  A. McCallion,et al.  Mesenchymal state of intimal cells may explain higher propensity to ascending aortic aneurysm in bicuspid aortic valves , 2016, Scientific Reports.

[3]  A. Tomilin,et al.  Notch-dependent EMT is attenuated in patients with aortic aneurysm and bicuspid aortic valve. , 2016, Biochimica et biophysica acta.

[4]  W. Andrews,et al.  Disrupted Slit-Robo signalling results in membranous ventricular septum defects and bicuspid aortic valves , 2015, Cardiovascular research.

[5]  Y. Hu,et al.  Roundabout 4 Regulates Blood–Tumor Barrier Permeability Through the Modulation of ZO-1, Occludin, and Claudin-5 Expression , 2015, Journal of neuropathology and experimental neurology.

[6]  David A. Scott,et al.  Genome engineering using the CRISPR-Cas9 system , 2013, Nature Protocols.

[7]  Susan R. Wente,et al.  Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system , 2013, Proceedings of the National Academy of Sciences.

[8]  Russell A. Gould,et al.  Multi-Scale Biomechanical Remodeling in Aging and Genetic Mutant Murine Mitral Valve Leaflets: Insights into Marfan Syndrome , 2012, PloS one.

[9]  Chris B Schaffer,et al.  Cyclic strain anisotropy regulates valvular interstitial cell phenotype and tissue remodeling in three-dimensional culture. , 2012, Acta biomaterialia.

[10]  B. Keavney,et al.  Nonsynonymous variants in the SMAD6 gene predispose to congenital cardiovascular malformation , 2012, Human mutation.

[11]  G. Pals,et al.  Phenotypic spectrum of the SMAD3-related aneurysms–osteoarthritis syndrome , 2011, Journal of Medical Genetics.

[12]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[13]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer , 2011, Nature Biotechnology.

[14]  J. Michel,et al.  Fibrinolytic activity is associated with presence of cystic medial degeneration in aneurysms of the ascending aorta , 2010, Histopathology.

[15]  S. Shete,et al.  Mutations in myosin light chain kinase cause familial aortic dissections. , 2010, American journal of human genetics.

[16]  B. Loeys,et al.  The Loeys–Dietz syndrome: an update for the clinician , 2010, Current opinion in cardiology.

[17]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[18]  R. Norris,et al.  Transforming growth factor β, bone morphogenetic protein, and vascular endothelial growth factor mediate phenotype maturation and tissue remodeling by embryonic valve progenitor cells: relevance for heart valve tissue engineering. , 2010, Tissue engineering. Part A.

[19]  H. Hakonarson,et al.  ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data , 2010, Nucleic acids research.

[20]  Drena Dobbs,et al.  ZiFiT (Zinc Finger Targeter): an updated zinc finger engineering tool , 2010, Nucleic Acids Res..

[21]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[22]  T. Tadros,et al.  Ascending aortic dilatation associated with bicuspid aortic valve: pathophysiology, molecular biology, and clinical implications. , 2009, Circulation.

[23]  Benjamin S. Brooke,et al.  Angiotensin II blockade and aortic-root dilation in Marfan's syndrome. , 2008, The New England journal of medicine.

[24]  Joshua D. Wythe,et al.  Corrigendum: Robo4 stabilizes the vascular network by inhibiting pathologic angiogenesis and endothelial hyperpermeability , 2008, Nature Medicine.

[25]  Robert K. Yu,et al.  Mutations in smooth muscle α-actin (ACTA2) lead to thoracic aortic aneurysms and dissections , 2007, Nature Genetics.

[26]  H. Dietz,et al.  Familial thoracic aortic dilation and bicommissural aortic valve: A prospective analysis of natural history and inheritance , 2007, American journal of medical genetics. Part A.

[27]  T. Sundt,et al.  Novel NOTCH1 mutations in patients with bicuspid aortic valve disease and thoracic aortic aneurysms. , 2007, The Journal of thoracic and cardiovascular surgery.

[28]  Daniel F. Voytas,et al.  Zinc Finger Targeter (ZiFiT): an engineered zinc finger/target site design tool , 2007, Nucleic Acids Res..

[29]  C. Liang,et al.  In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro , 2007, Nature Protocols.

[30]  V. Gott,et al.  Early surgical experience with Loeys-Dietz: a new syndrome of aggressive thoracic aortic aneurysm disease. , 2007, The Annals of thoracic surgery.

[31]  P. Byers,et al.  Aneurysm syndromes caused by mutations in the TGF-beta receptor. , 2006, The New England journal of medicine.

[32]  George H. Thomas,et al.  Aneurysm Syndromes Caused by Mutations in the TGF-β Receptor , 2006 .

[33]  A. Lalande,et al.  Mutations in myosin heavy chain 11 cause a syndrome associating thoracic aortic aneurysm/aortic dissection and patent ductus arteriosus , 2006, Nature Genetics.

[34]  D. Srivastava,et al.  Mutations in NOTCH1 cause aortic valve disease , 2005, Nature.

[35]  Dean Y. Li,et al.  roundabout4 is essential for angiogenesis in vivo. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Eric M. Isselbacher,et al.  Thoracic and Abdominal Aortic Aneurysms , 2005, Circulation.

[37]  Lisa J. Martin,et al.  Bicuspid aortic valve is heritable. , 2004, Journal of the American College of Cardiology.

[38]  Christopher A. Jones,et al.  Robo4 is a vascular-specific receptor that inhibits endothelial migration. , 2003, Developmental biology.

[39]  S. Verma,et al.  Clinical and Pathophysiological Implications of a Bicuspid Aortic Valve , 2002, Circulation.

[40]  M. Silberbach,et al.  Aortic and pulmonary stenosis. , 2000, Pediatrics in review.

[41]  C. Ward Clinical significance of the bicuspid aortic valve , 2000, Heart.

[42]  A. Hunter,et al.  A prospective study to assess the frequency of familial clustering of congenital bicuspid aortic valve. , 1997, Journal of the American College of Cardiology.

[43]  P. Carmeliet,et al.  Urokinase-generated plasmin activates matrix metalloproteinases during aneurysm formation , 1997, Nature Genetics.

[44]  H. Dietz,et al.  Targetting of the gene encoding fibrillin–1 recapitulates the vascular aspect of Marfan syndrome , 1997, Nature Genetics.

[45]  R. Tenconi,et al.  Familial congenital bicuspid aortic valve: a disorder of uncertain inheritance. , 1996, American journal of medical genetics.

[46]  H. Shah,et al.  Cystic medial necrosis of the ascending aorta. , 1981, The Journal of the Medical Society of New Jersey.

[47]  V. McKusick,et al.  Association of Aortic Valvular Disease and Cystic Medial Necrosis of the Ascending Aorta: Report of Four Instances , 1957, Circulation.

[48]  Robert K. Yu,et al.  Mutations in smooth muscle alpha-actin (ACTA2) lead to thoracic aortic aneurysms and dissections (vol 39, pg 1488, 2007) , 2008 .

[49]  Claude-Alain H. Roten,et al.  Theoretical and practical advances in genome halving , 2004 .

[50]  M. Westerfield The zebrafish book : a guide for the laboratory use of zebrafish (Danio rerio) , 1995 .