A Fuzzy Logic Approach for Spacecraft Landing Site Selection

[1]  Jack Bresenham,et al.  Algorithm for computer control of a digital plotter , 1965, IBM Syst. J..

[2]  K. Oost,et al.  Reproducibility of UAV-based earth topography reconstructions based on Structure-from-Motion algorithms , 2016 .

[3]  Stephen R. Steffes,et al.  Optical Terrain Relative Navigation Approaches to Lunar Orbit, Descent and Landing , 2019 .

[4]  Bo Li,et al.  Geological characterization of the Chang'e-4 landing area on the lunar farside , 2019, Icarus.

[5]  He Zhang,et al.  Topographic modeling and analysis of the landing site of Chang'E-3 on the Moon , 2014 .

[6]  Andrew E. Johnson,et al.  Development of a Signature-based Terrain Relative Navigation System for Precision Landing , 2020, AIAA Scitech 2021 Forum.

[7]  Lotfi A. Zadeh,et al.  Soft computing and fuzzy logic , 1994, IEEE Software.

[8]  Prasun Mahanti,et al.  Flight Calibration of the LROC Narrow Angle Camera , 2016 .

[9]  S. Robson,et al.  Optimising UAV topographic surveys processed with structure-from-motion: Ground control quality, quantity and bundle adjustment , 2016 .

[10]  Franz Andert,et al.  Lidar-Aided Camera Feature Tracking and Visual SLAM for Spacecraft Low-Orbit Navigation and Planetary Landing , 2015 .

[11]  Jia Liu,et al.  Landing site topographic mapping and rover localization for Chang’e-4 mission , 2020, Science China Information Sciences.

[12]  Man Peng,et al.  Geospatial technologies for Chang’e-3 and Chang’e-4 lunar rover missions , 2020, Geo spatial Inf. Sci..

[13]  Farzin Amzajerdian,et al.  Flight Testing ALHAT Precision Landing Technologies Integrated Onboard the Morpheus Rocket Vehicle , 2015 .

[14]  Man Peng,et al.  High precision landing site mapping and rover localization for Chang’e-3 mission , 2015 .

[15]  Andres Huertas,et al.  Landing Hazard Detection with Stereo Vision and Shadow Analysis , 2007 .