Analysis of the impact of using different diversity functions for the subgroup discovery algorithm NMEEF-SD

A main purpose of a multi-objective evolutionary algorithm is to find a good relationship between convergence and diversity of the population. Convergence guides the algorithm to search the optimal solution and diversity tries to avoid a premature stagnation of the search. In multi-objective evolutionary algorithms, diversity has been promoted using different techniques. In this paper, several diversity functions were implemented in NMEEF-SD, an algorithm for the extraction of fuzzy rules in a subgroup discovery task, to analyse the influence of these functions in the evolutionary process. The results show the advantages of the different measures, depending on the intended objective.

[1]  María José del Jesús,et al.  Multiobjective Evolutionary Induction of Subgroup Discovery Fuzzy Rules: A Case Study in Marketing , 2006, ICDM.

[2]  Willi Klösgen,et al.  Explora: A Multipattern and Multistrategy Discovery Assistant , 1996, Advances in Knowledge Discovery and Data Mining.

[3]  María José del Jesús,et al.  Multiobjective Genetic Algorithm for Extracting Subgroup Discovery Fuzzy Rules , 2007, 2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making.

[4]  Jorge Casillas,et al.  Special issue on “Genetic Fuzzy Systems: Recent Developments and Future Directions” , 2009, Soft Comput..

[5]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[6]  Peter A. Flach,et al.  Decision Support Through Subgroup Discovery: Three Case Studies and the Lessons Learned , 2004, Machine Learning.

[7]  Stefan Wrobel,et al.  An Algorithm for Multi-relational Discovery of Subgroups , 1997, PKDD.

[8]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[9]  R. Wilsnack Information Control , 1980 .

[10]  Francisco Herrera,et al.  Fuzzy Sets and Their Extensions: Representation, Aggregation and Models , 2008 .

[11]  Larry J. Eshelman,et al.  Preventing Premature Convergence in Genetic Algorithms by Preventing Incest , 1991, ICGA.

[12]  Padhraic Smyth,et al.  From Data Mining to Knowledge Discovery: An Overview , 1996, Advances in Knowledge Discovery and Data Mining.

[13]  María José del Jesús,et al.  An analysis of evolutionary algorithms with different types of fuzzy rules in subgroup discovery , 2009, 2009 IEEE International Conference on Fuzzy Systems.

[14]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[15]  María José del Jesús,et al.  Evolutionary Fuzzy Rule Induction Process for Subgroup Discovery: A Case Study in Marketing , 2007, IEEE Transactions on Fuzzy Systems.

[16]  L. Darrell Whitley,et al.  The GENITOR Algorithm and Selection Pressure: Why Rank-Based Allocation of Reproductive Trials is Best , 1989, ICGA.

[17]  María José del Jesús,et al.  An overview on subgroup discovery: foundations and applications , 2011, Knowledge and Information Systems.

[18]  Mehmet Kaya,et al.  Automated extraction of extended structured motifs using multi-objective genetic algorithm , 2010, Expert Syst. Appl..

[19]  Stefan Wrobel,et al.  Inductive Logic Programming for Knowledge Discovery in Databases , 2001 .

[20]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[21]  María José del Jesús,et al.  Evolutionary algorithms for subgroup discovery in e-learning: A practical application using Moodle data , 2009, Expert Syst. Appl..

[22]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[23]  Ignacio Rojas,et al.  Guest Editorial Genetic Fuzzy Systems: What's Next? An Introduction to the Special Section , 2007, IEEE Trans. Fuzzy Syst..

[24]  María José del Jesús,et al.  NMEEF-SD: Non-dominated Multiobjective Evolutionary Algorithm for Extracting Fuzzy Rules in Subgroup Discovery , 2010, IEEE Transactions on Fuzzy Systems.

[25]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[26]  María José del Jesús,et al.  Evolutionary fuzzy rule extraction for subgroup discovery in a psychiatric emergency department , 2011, Soft Comput..

[27]  Tzung-Pei Hong,et al.  A Genetic-Fuzzy Mining Approach for Items with Multiple Minimum Supports , 2007, FUZZ-IEEE.

[28]  Gerrit Kateman,et al.  Optimization of calibration data with the dynamic genetic algorithm , 1992 .

[29]  Francisco Herrera,et al.  Ten years of genetic fuzzy systems: current framework and new trends , 2004, Fuzzy Sets Syst..

[30]  Peter A. Flach,et al.  Rule Evaluation Measures: A Unifying View , 1999, ILP.

[31]  Kalyanmoy Deb,et al.  Finding Knees in Multi-objective Optimization , 2004, PPSN.

[32]  Tzung-Pei Hong,et al.  An improved approach to find membership functions and multiple minimum supports in fuzzy data mining , 2009, Expert Syst. Appl..

[33]  C J Carmona,et al.  Evolutionary algorithms for subgroup discovery applied to e-learning data , 2010, IEEE EDUCON 2010 Conference.

[34]  Francisco Herrera,et al.  Learning the membership function contexts for mining fuzzy association rules by using genetic algorithms , 2009, Fuzzy Sets Syst..

[35]  Hisao Ishibuchi,et al.  Multiobjective Genetic Fuzzy Systems: Review and Future Research Directions , 2007, 2007 IEEE International Fuzzy Systems Conference.

[36]  Francisco Herrera,et al.  Genetic fuzzy systems: taxonomy, current research trends and prospects , 2008, Evol. Intell..

[37]  María José del Jesús,et al.  Subgroup Discovery with Linguistic Rules , 2008, Fuzzy Sets and Their Extensions: Representation, Aggregation and Models.

[38]  H. Ishibuchi Genetic fuzzy systems: evolutionary tuning and learning of fuzzy knowledge bases , 2004 .

[39]  Arno Siebes,et al.  Data Surveying: Foundations of an Inductive Query Language , 1995, KDD.

[40]  Mehmet Kaya,et al.  MOGAMOD: Multi-objective genetic algorithm for motif discovery , 2009, Expert Syst. Appl..

[41]  Eyke Hüllermeier,et al.  Fuzzy methods in machine learning and data mining: Status and prospects , 2005, Fuzzy Sets Syst..

[42]  Mehmet Kaya Autonomous classifiers with understandable rule using multi-objective genetic algorithms , 2010, Expert Syst. Appl..

[43]  Nada Lavrac,et al.  Expert-Guided Subgroup Discovery: Methodology and Application , 2011, J. Artif. Intell. Res..