Complex fault interaction controls continental rifting

[1]  R. Müller,et al.  Abrupt plate accelerations shape rifted continental margins , 2016, Nature.

[2]  L. Lavier,et al.  Conjugate rifted margins width and asymmetry: The interplay between lithospheric strength and thermomechanical processes , 2015 .

[3]  T. Reston,et al.  To see, or not to see? Rifted margin extension , 2015 .

[4]  S. Buiter,et al.  Rift reactivation and migration during multiphase extension , 2015 .

[5]  A. Blischke,et al.  Conjugate volcanic rifted margins, seafloor spreading, and microcontinent: Insights from new high‐resolution aeromagnetic surveys in the Norway Basin , 2015 .

[6]  Geoffrey Blewitt,et al.  A geodetic plate motion and Global Strain Rate Model , 2014 .

[7]  Christian Heine,et al.  Rift migration explains continental margin asymmetry and crustal hyper-extension , 2014, Nature Communications.

[8]  M. Behn,et al.  Rapid rotation of normal faults due to flexural stresses: An explanation for the global distribution of normal fault dips , 2014 .

[9]  M. Eremets,et al.  Ammonia as a case study for the spontaneous ionization of a simple hydrogen-bonded compound , 2014, Nature Communications.

[10]  G. Manatschal,et al.  Quantification and restoration of extensional deformation along the Western Iberia and Newfoundland rifted margins , 2013 .

[11]  P. Osmundsen,et al.  Structural comparison of archetypal Atlantic rifted margins: A review of observations and concepts , 2013 .

[12]  C. Beaumont,et al.  Influence of offset weak zones on the development of rift basins: Activation and abandonment during continental extension and breakup , 2013 .

[13]  G. Hirth,et al.  Rheology of the Upper Mantle and the Mantle Wedge: A View from the Experimentalists , 2013 .

[14]  C. Beaumont,et al.  Effect of depleted continental lithosphere counterflow and inherited crustal weakness on rifting of the continental lithosphere: General results , 2012 .

[15]  S. Buiter,et al.  Geodynamic models of terrane accretion: Testing the fate of island arcs, oceanic plateaus, and continental fragments in subduction zones , 2012 .

[16]  S. Buiter,et al.  Feedback between rifting and diapirism can exhume ultrahigh-pressure rocks , 2011 .

[17]  David S. Chapman,et al.  Heat production and geotherms for the continental lithosphere , 2011 .

[18]  C. Beaumont,et al.  Depth-dependent extension, two-stage breakup and cratonic underplating at rifted margins , 2011, Nature.

[19]  C. Ranero,et al.  Sequential faulting explains the asymmetry and extension discrepancy of conjugate margins , 2010, Nature.

[20]  J. Ebbing,et al.  Styles of extension offshore mid‐Norway and implications for mechanisms of crustal thinning at passive margins , 2008 .

[21]  G. Cavinato,et al.  Structural architecture of the central Apennines: Interpretation of the CROP 11 seismic profile from the Adriatic coast to the orographic divide , 2008 .

[22]  T. Andersen,et al.  Exhuming Norwegian ultrahigh‐pressure rocks: Overprinting extensional structures and the role of the Nordfjord‐Sogn Detachment Zone , 2007 .

[23]  T. Minshull,et al.  Tectonosedimentary evolution of the deep Iberia‐Newfoundland margins: Evidence for a complex breakup history , 2007 .

[24]  G. Axen Research Focus: Significance of large-displacement, low-angle normal faults , 2007 .

[25]  Luc L. Lavier,et al.  A mechanism to thin the continental lithosphere at magma-poor margins , 2006, Nature.

[26]  G. Dresen,et al.  Influence of water fugacity and activation volume on the flow properties of fine‐grained anorthite aggregates , 2006 .

[27]  Hunter R. Hill,et al.  A Model of Formation , 2006 .

[28]  T. Reston Polyphase faulting during the development of the west Galicia rifted margin , 2005 .

[29]  S. Buiter,et al.  Effect of plastic-viscous layering and strain softening on mode selection during lithospheric extension , 2005 .

[30]  Ernest H. Rutter,et al.  Experimental grain size-sensitive flow of hot-pressed Brazilian quartz aggregates , 2004 .

[31]  R. Gabrielsen,et al.  The complexity of a ramp–flat–ramp fault and its effect on hanging-wall structuring: an example from the Njord oil field, offshore mid-Norway , 2004, Petroleum Geoscience.

[32]  S. Cloetingh,et al.  Basin migration caused by slow lithospheric extension , 2002 .

[33]  C. Spiers,et al.  Frictional-viscous flow of phyllosilicate-bearing fault rock: Microphysical model and implications for crustal strength profiles , 2002 .

[34]  T. Minshull,et al.  Evolution of magma-poor continental margins from rifting to seafloor spreading , 2001, Nature.

[35]  David A. Yuen,et al.  The effects of a composite non-Newtonian and Newtonian rheology on mantle convection , 1993 .

[36]  B. Wernicke,et al.  Basin and Range extensional tectonics at the latitude of Las Vegas, Nevada: Discussion and reply , 1990 .

[37]  G. Lister,et al.  Detachment faulting and the evolution of passive continental margins , 1986 .

[38]  X. Pichon,et al.  Passive margins: A model of formation , 1981 .

[39]  D. McKenzie,et al.  Some remarks on the development of sedimentary basins , 1978 .

[40]  GENERAL RESULTS , 1970 .

[41]  J. Dawson,et al.  The Nature of the lower continental crust , 1986 .

[42]  David S. Chapman,et al.  Thermal gradients in the continental crust , 1986, Geological Society, London, Special Publications.

[43]  B. Wernicke,et al.  Uniform-sense normal simple shear of the continental lithosphere , 1985 .