Messengers from the Early Universe: Cosmic Neutrinos and Other Light Relics

Author(s): Green, Daniel; Amin, Mustafa A; Meyers, Joel; Wallisch, Benjamin; Abazajian, Kevork N; Abidi, Muntazir; Adshead, Peter; Ahmed, Zeeshan; Ansarinejad, Behzad; Armstrong, Robert; Baccigalupi, Carlo; Bandura, Kevin; Barron, Darcy; Battaglia, Nicholas; Baumann, Daniel; Bechtol, Keith; Bennett, Charles; Benson, Bradford; Beutler, Florian; Bischoff, Colin; Bleem, Lindsey; Bond, J Richard; Borrill, Julian; Buckley-Geer, Elizabeth; Burgess, Cliff; Carlstrom, John E; Castorina, Emanuele; Challinor, Anthony; Chen, Xingang; Cooray, Asantha; Coulton, William; Craig, Nathaniel; Crawford, Thomas; Cyr-Racine, Francis-Yan; D'Amico, Guido; Demarteau, Marcel; Dore, Olivier; Yutong, Duan; Dunkley, Joanna; Dvorkin, Cora; Ellison, John; Engelen, Alexander van; Escoffier, Stephanie; Essinger-Hileman, Tom; Fabbian, Giulio; Filippini, Jeffrey; Flauger, Raphael; Foreman, Simon; Fuller, George; Garcia, Marcos AG; Garcia-Bellido, Juan; Gerbino, Martina; Gluscevic, Vera; Gontcho, Satya Gontcho A; Gorski, Krzysztof M; Grin, Daniel; Grohs, Evan; Gudmundsson, Jon E; Hanany, Shaul; Handley, Will; Hill, J Colin; Hirata, Christopher M; Hložek, Renee; Holder, Gilbert; Horiuchi, Shunsaku; Huterer, Dragan; Kadota, Kenji; Kamionkowski, Marc; Keeley, Ryan E; Khatri, Rishi; Kisner, Theodore; Kneib, Jean-Paul; Knox, Lloyd; Koushiappas, Savvas M; Kovetz, Ely D; L'Huillier, Benjamin; Lahav, Ofer; Lattanzi, Massimiliano; Lee, Hayden; Liguori, Michele; Lin, Tongyan; Loverde, Marilena; Madhavacheril, Mathew; Masui, Kiyoshi; McMahon, Jeff | Abstract: The hot dense environment of the early universe is known to have produced large numbers of baryons, photons, and neutrinos. These extreme conditions may have also produced other long-lived species, including new light particles (such as axions or sterile neutrinos) or gravitational waves. The gravitational effects of any such light relics can be observed through their unique imprint in the cosmic microwave background (CMB), the large-scale structure, and the primordial light element abundances, and are important in determining the initial conditions of the universe. We argue that future cosmological observations, in particular improved maps of the CMB on small angular scales, can be orders of magnitude more sensitive for probing the thermal history of the early universe than current experiments. These observations offer a unique and broad discovery space for new physics in the dark sector and beyond, even when its effects would not be visible in terrestrial experiments or in astrophysical environments. A detection of an excess light relic abundance would be a clear indication of new physics and would provide the first direct information about the universe between the times of reheating and neutrino decoupling one second later.

Benjamin Rose | Julian Borrill | Shaul Hanany | Radek Stompor | Matias Zaldarriaga | John Ruhl | John E. Carlstrom | Thomas Crawford | Anthony Challinor | Giulio Fabbian | Jon E. Gudmundsson | Ningfeng Zhu | Sara Simon | Eric R. Switzer | Zhilei Xu | Tom Essinger-Hileman | Keith Bechtol | Lindsey Bleem | Marcel Demarteau | Kevin Bandura | J. Richard Bond | Mark Trodden | Michael D. Niemack | Laura Newburgh | Scott Watson | Elena Pierpaoli | Asantha Cooray | Gong-Bo Zhao | William Coulton | Jean-Paul Kneib | Eleonora Di Valentino | Darcy Barron | Aritoki Suzuki | George Fuller | Christian L. Reichardt | Lyman Page | Giuseppe Puglisi | Carlo Baccigalupi | Weishuang Xu | Ofer Lahav | Nathan Whitehorn | Cora Dvorkin | Matthew McQuinn | Lloyd Knox | Raphael Flauger | Levon Pogosian | Siavash Yasini | Emmanuel Schaan | Behzad Ansarinejad | Stephanie Escoffier | Christopher M. Hirata | Ryan E. Keeley | Savvas M. Koushiappas | Ely D. Kovetz | Graziano Rossi | Joe Zuntz | Robert Armstrong | Ren'ee Hlovzek | Kenji Kadota | Jeffrey Filippini | Florian Beutler | Martina Gerbino | Massimiliano Lattanzi | Blake D. Sherwin | Mustafa A. Amin | Emanuele Castorina | Alexander van Engelen | Simon Foreman | Gilbert Holder | Andrei Nomerotski | Neelima Sehgal | Albert Stebbins | Peter Timbie | Marco Raveri | Hayden Lee | Daniel Baumann | Nicholas Battaglia | Suzanne Staggs | Matthieu Tristram | Leonardo Senatore | P. Daniel Meerburg | Nathaniel Craig | Michael Schubnell | Peter Adshead | Francis-Yan Cyr-Racine | Vera Gluscevic | Daniel Grin | Evan Grohs | Marilena Loverde | Suvodip Mukherjee | Caterina Umilta | Joel Meyers | Jeff McMahon | Hee-Jong Seo | O. Lahav | C. Baccigalupi | J. Kneib | F. Beutler | S. Escoffier | S. G. A. Gontcho | G. Rossi | H. Seo | A. Slosar | M. Vargas-Magaña | Gong-Bo Zhao | A. Challinor | J. Dunkley | L. Page | J. Borrill | S. Hanany | R. Stompor | J. Bond | J. Ruhl | Z. Ahmed | B. Benson | J. Carlstrom | A. Suzuki | N. Whitehorn | N. Battaglia | M. Kamionkowski | K. Bechtol | E. Buckley-Geer | M. Schubnell | J. Zuntz | S. Mukherjee | A. Stebbins | R. Armstrong | E. Pierpaoli | D. Huterer | T. Kisner | J. Hill | T. Weiler | M. Zaldarriaga | S. Foreman | M. Trodden | M. Demarteau | A. Nomerotski | K. M. G'orski | L. Knox | M. Liguori | M. Tristram | F. Cyr-Racine | J. Gudmundsson | M. Lattanzi | C. Hirata | Zhilei Xu | L. Senatore | E. D. Valentino | M. Gerbino | S. Horiuchi | G. Puglisi | P. Timbie | Marcos A. G. Garćıa | M. Amin | D. Green | R. Flauger | D. Baumann | C. Burgess | B. Ansarinejad | M. Niemack | N. Craig | E. Castorina | Yuhsin Tsai | Tongyan Lin | C. Reichardt | L. Bleem | T. Crawford | G. Holder | J. McMahon | C. Pryke | A. V. Engelen | G. Fuller | E. Switzer | W. L. K. Wu | A. Cooray | S. Staggs | A. Vieregg | C. Bischoff | J. Filippini | K. Bandura | L. Newburgh | M. McQuinn | E. Kovetz | K. Abazajian | B. Wallisch | P. Meerburg | N. Sehgal | T. Essinger-Hileman | B. Sherwin | E. Schaan | R. Hlovzek | M. Madhavacheril | S. Simon | Julian B. Muñoz | W. Handley | D. Barron | G. Fabbian | V. Gluscevic | J. Meyers | N. Zhu | P. Adshead | C. Dvorkin | D. Grin | E. Grohs | M. Loverde | L. Pogosian | M. Raveri | S. Watson | H. Lee | P. Motloch | Joanna Dunkley | Mathew Madhavacheril | Marc Kamionkowski | Daniel Green | Anvze Slosar | Michele Liguori | Thomas Weiler | K. Schutz | Xingang Chen | Satya Gontcho A Gontcho | Benjamin Wallisch | Mehrdad Mirbabayi | Rishi Khatri | J. Colin Hill | Xingang Chen | K. Kadota | C. Umiltà | R. Khatri | B. Rose | W. Coulton | J. Nagy | Tongyan Lin | Bradford Benson | Julian B. Munoz | Kevork N. Abazajian | Muntazir Abidi | Zeeshan Ahmed | Charles Bennett | Colin Bischoff | Elizabeth Buckley-Geer | Cliff Burgess | Guido D'Amico | Olivier Dor'e | Duan Yutong | John Ellison | Marcos A. G. Garcia | Juan Garc'ia-Bellido | Krzysztof M. G'orski | Will Handley | Shunsaku Horiuchi | Dragan Huterer | Theodore Kisner | Benjamin L'Huillier | Kiyoshi Masui | Pavel Motloch | Johanna Nagy | Francesco Piacentni | Clement Pryke | Katelin Schutz | Yu-Dai Tsai | M. Vargas-Magana | Abigail Vieregg | S. Koushiappas | Duan Yutong | Mehrdad Mirbabayi | Francesco Piacentni | W. Xu | S. Yasini | J. Ellison | J. Garc'ia-Bellido | O. Dor'e | G. D’Amico | B. L’Huillier | G. Zhao | K. Masui | Muntazir M. Abidi | Charles Bennett | S. Gontcho | Joel Meyers | M. A. Garcia | Hayden Lee | C. Umilta | R. Keeley | J. Hill | J. Bond | A. Vieregg | Peter Adshead | H. Seo

[1]  J. Lesgourgues,et al.  Lyman-α constraints on warm and on warm–plus–cold dark matter models , 2020 .

[2]  A. Slosar,et al.  First constraint on the neutrino-induced phase shift in the spectrum of baryon acoustic oscillations , 2019, Nature Physics.

[3]  F. Villaescusa-Navarro,et al.  First Detection of Scale-Dependent Linear Halo Bias in N-Body Simulations with Massive Neutrinos. , 2018, Physical review letters.

[4]  Marius Millea,et al.  Sounds Discordant: Classical Distance Ladder and ΛCDM-based Determinations of the Cosmological Sound Horizon , 2018, The Astrophysical Journal.

[5]  B. Wallisch,et al.  Cosmological Probes of Light Relics , 2018, Springer Theses.

[6]  Edward J. Wollack,et al.  The Simons Observatory: science goals and forecasts , 2018, Journal of Cosmology and Astroparticle Physics.

[7]  JiJi Fan,et al.  Cosmological dynamics of Higgs potential fine tuning , 2019, Physical Review D.

[8]  Evan J. Arena,et al.  Inflation and Early Dark Energy with a Stage II Hydrogen Intensity Mapping experiment , 2018, 1810.09572.

[9]  Shaul Hanany,et al.  PICO - the probe of inflation and cosmic origins , 2018, Astronomical Telescopes + Instrumentation.

[10]  Julian B. Muñoz,et al.  Efficient computation of galaxy bias with neutrinos and other relics , 2018, Physical Review D.

[11]  Zachary J. Weiner,et al.  Gravitational waves from gauge preheating , 2018, Physical Review D.

[12]  Chi-Ting Chiang,et al.  Probing decoupling in dark sectors with the cosmic microwave background , 2018, Journal of Cosmology and Astroparticle Physics.

[13]  Michael Geller,et al.  Cosmological signatures of a mirror twin Higgs , 2018, Journal of High Energy Physics.

[14]  Chiara Caprini,et al.  Cosmological backgrounds of gravitational waves , 2018, Classical and Quantum Gravity.

[15]  D. Green,et al.  Searching for light relics with large-scale structure , 2017, Journal of Cosmology and Astroparticle Physics.

[16]  Vera Gluscevic,et al.  Constraints on Scattering of keV-TeV Dark Matter with Protons in the Early Universe. , 2017, Physical review letters.

[17]  Karl Glazebrook,et al.  KiDS-450 + 2dFLenS: Cosmological parameter constraints from weak gravitational lensing tomography and overlapping redshift-space galaxy clustering , 2017, 1707.06627.

[18]  C. Steidel,et al.  One Percent Determination of the Primordial Deuterium Abundance , 2017, 1710.11129.

[19]  S. Knapen,et al.  Light dark matter: Models and constraints , 2017, 1709.07882.

[20]  M. Halpern,et al.  Elucidating ΛCDM: Impact of Baryon Acoustic Oscillation Measurements on the Hubble Constant Discrepancy , 2017, 1707.06547.

[21]  Enectali Figueroa-Feliciano,et al.  US Cosmic Visions: New Ideas in Dark Matter 2017: Community Report , 2017, 1707.04591.

[22]  N. V. Karpenka,et al.  A blinded determination of H0 from low-redshift Type Ia supernovae, calibrated by Cepheid variables , 2017, 1706.07573.

[23]  P. Schneider,et al.  KiDS-450: The tomographic weak lensing power spectrum and constraints on cosmological parameters , 2017, 1706.02892.

[24]  Zhen Pan,et al.  A tale of two modes: neutrino free-streaming in the early universe , 2017, 1704.06657.

[25]  Kris Sigurdson,et al.  Cosmological constraints on interacting light particles , 2017, 1703.10732.

[26]  Matias Zaldarriaga,et al.  Phases of New Physics in the BAO Spectrum , 2017, 1703.00894.

[27]  D. Green,et al.  The cosmology of sub-MeV dark matter , 2017, 1701.08750.

[28]  R. D’Agnolo,et al.  Solving the Hierarchy Problem at Reheating with a Large Number of Degrees of Freedom. , 2016, Physical review letters.

[29]  Nathaniel Craig,et al.  Cosmological signals of a mirror twin Higgs , 2016, 1611.07977.

[30]  Patrick J. Fox,et al.  Cosmology in Mirror Twin Higgs and neutrino masses , 2016, 1611.07975.

[31]  Adrian T. Lee,et al.  CMB-S4 Science Book, First Edition , 2016, 1610.02743.

[32]  Enectali Figueroa-Feliciano,et al.  Dark Sectors 2016 Workshop: Community Report , 2016, 1608.08632.

[33]  M. Peimbert,et al.  The primordial helium abundance and the number of neutrino families , 2016, 1608.02062.

[34]  Adam G. Riess,et al.  The trouble with H0 , 2016, 1607.05617.

[35]  S. Pastor,et al.  Relic neutrino decoupling with flavour oscillations revisited , 2016, 1606.06986.

[36]  Daniel Baumann,et al.  New Target for Cosmic Axion Searches. , 2016, Physical review letters.

[37]  Scott Dodelson,et al.  Cosmic Visions Dark Energy: Science , 2016, 1604.07626.

[38]  Jessie Shelton,et al.  Chilly dark sectors and asymmetric reheating , 2016, 1604.02458.

[39]  G. Fuller,et al.  Neutrino energy transport in weak decoupling and big bang nucleosynthesis , 2015, 1512.02205.

[40]  U. Pen,et al.  Probing Neutrino Hierarchy and Chirality via Wakes. , 2014, Physical review letters.

[41]  D. Marsh,et al.  Axion Cosmology , 2015, 1510.07633.

[42]  Edward J. Wollack,et al.  Advanced ACTPol Cryogenic Detector Arrays and Readout , 2015, 1510.02809.

[43]  Daniel Baumann,et al.  Phases of new physics in the CMB , 2015, 1508.06342.

[44]  J. Lesgourgues,et al.  Evidence for dark matter interactions in cosmological precision data? , 2015, 1507.04351.

[45]  Sungwoo Hong,et al.  Hidden dark matter sector, dark radiation, and the CMB , 2015, 1505.04192.

[46]  B. Fields,et al.  Big bang nucleosynthesis: Present status , 2015, 1505.01076.

[47]  David E Kaplan,et al.  Cosmological Relaxation of the Electroweak Scale. , 2015, Physical review letters.

[48]  Masaki Yamada,et al.  Observable dark radiation from a cosmologically safe QCD axion , 2015, 1504.04126.

[49]  K. Olive,et al.  The effects of He I λ10830 on helium abundance determinations , 2015, 1503.08146.

[50]  Zhen Pan,et al.  First Detection of the Acoustic Oscillation Phase Shift Expected from the Cosmic Neutrino Background. , 2015, Physical review letters.

[51]  Ren'ee Hlovzek,et al.  Multiwavelength constraints on the inflationary consistency relation , 2015, 1502.00302.

[52]  S. Bridle,et al.  Cosmic Discordance: Are Planck CMB and CFHTLenS weak lensing measurements out of tune? , 2014, 1408.4742.

[53]  A. G. Vieregg,et al.  Neutrino Physics from the Cosmic Microwave Background and Large-Scale Structure , 2013, 1309.5383.

[54]  Fabio Governato,et al.  Cold dark matter: Controversies on small scales , 2013, Proceedings of the National Academy of Sciences.

[55]  David I. Kaiser,et al.  Nonperturbative Dynamics Of Reheating After Inflation: A Review , 2014, 1410.3808.

[56]  P. A. R. Ade,et al.  SPT-3G: a next-generation cosmic microwave background polarization experiment on the South Pole telescope , 2014, Astronomical Telescopes and Instrumentation.

[57]  M. Loverde Halo bias in mixed dark matter cosmologies , 2014, 1405.4855.

[58]  Wei Xue,et al.  Thermal axion production , 2013, 1310.6982.

[59]  Kris Sigurdson,et al.  Limits on Neutrino-Neutrino Scattering in the Early Universe , 2013, 1306.1536.

[60]  Michael J. Pivovaroff,et al.  Working Group Report: New Light Weakly Coupled Particles , 2013 .

[61]  Olga Mena,et al.  Cosmic dark radiation and neutrinos , 2013, 1307.0637.

[62]  Steven Weinberg,et al.  Goldstone bosons as fractional cosmic neutrinos. , 2013, Physical review letters.

[63]  David E. Kaplan,et al.  New light species and the CMB , 2013, 1303.5379.

[64]  Jorn Kersten,et al.  Dark radiation from particle decay: cosmological constraints and opportunities , 2012, 1212.4160.

[65]  Kris Sigurdson,et al.  Cosmology of atomic dark matter , 2012, 1209.5752.

[66]  Ryan Keisler,et al.  How massless neutrinos affect the cosmic microwave background damping tail , 2011, 1104.2333.

[67]  G. Karagiorgi,et al.  Light Sterile Neutrinos: A White Paper , 2012, 1204.5379.

[68]  Nickolay Y. Gnedin,et al.  Nonthermal dark matter mimicking an additional neutrino species in the early universe , 2011, 1111.6599.

[69]  Jasper Hasenkamp,et al.  Dark radiation from the axino solution of the gravitino problem , 2011, 1107.4319.

[70]  David E. Kaplan,et al.  Dark atoms: asymmetry and direct detection , 2011, 1105.2073.

[71]  Javier Redondo,et al.  Cosmological bounds on sub-MeV mass axions , 2010, 1011.3694.

[72]  Willy Fischler,et al.  Dark radiation emerging after big bang nucleosynthesis , 2010, 1011.3501.

[73]  Jared Kaplan,et al.  Discovering New Light States at Neutrino Experiments , 2010, 1008.0636.

[74]  N. Kaloper,et al.  String Axiverse , 2009, 0905.4720.

[75]  A. Boyarsky,et al.  The Role of Sterile Neutrinos in Cosmology and Astrophysics , 2008, 0901.0011.

[76]  Sean M. Carroll,et al.  Dark matter and dark radiation , 2008, 0810.5126.

[77]  R. Brandenberger,et al.  Observational constraints on theories with a blue spectrum of tensor modes , 2007, 0711.4602.

[78]  Alessandra Buonanno,et al.  Relating gravitational wave constraints from primordial nucleosynthesis, pulsar timing, laser interferometers, and the CMB: implications for the early universe , 2007, 0708.2279.

[79]  Gary N. Felder,et al.  Theory and numerics of gravitational waves from preheating after inflation , 2007, 0707.0875.

[80]  A. Friedland,et al.  Constraining Models of Neutrino Mass and Neutrino Interactions with the Planck Satellite , 2007, 0704.3271.

[81]  F. Vissani,et al.  Neutrino masses and mixings and... , 2006, hep-ph/0606054.

[82]  Richard Easther,et al.  Stochastic gravitational wave production after inflation , 2006, astro-ph/0601617.

[83]  E. Pierpaoli,et al.  Cosmological signatures of interacting neutrinos , 2005, astro-ph/0511410.

[84]  Gennaro Miele,et al.  Relic neutrino decoupling including flavour oscillations , 2005 .

[85]  D. Clowe,et al.  Direct constraints on the dark matter self-interaction cross-section from the merging galaxy cluster 1E0657-56 , 2003, astro-ph/0309303.

[86]  G. Fuller,et al.  Sterile Neutrino Hot, Warm, and Cold Dark Matter , 2001, astro-ph/0101524.

[87]  M. Maggiore Gravitational wave experiments and early universe cosmology , 1999, gr-qc/9909001.

[88]  M. Zaldarriaga,et al.  Analytic approach to the polarization of the cosmic microwave background in flat and open universes. , 1995, Physical review. D, Particles and fields.

[89]  Michael S. Turner,et al.  Primordial Nucleosynthesis Including Radiative, Coulomb, and Finite Temperature Corrections to Weak Rates , 1982 .

[90]  Phillip James Edwin Peebles,et al.  Primordial Helium Abundance and the Primordial Fireball. II , 1966 .