On the Performance of Turbo Signal Recovery with Partial DFT Sensing Matrices

This letter is on the performance of the turbo signal recovery (TSR) algorithm for partial discrete Fourier transform (DFT) matrices based compressed sensing. Based on state evolution analysis, we prove that TSR with a partial DFT sensing matrix outperforms the well-known approximate message passing (AMP) algorithm with an independent identically distributed (IID) sensing matrix.

[1]  Xiaojun Yuan,et al.  Turbo Compressed Sensing with Partial DFT Sensing Matrix , 2014, IEEE Signal Processing Letters.

[2]  Philip Schniter,et al.  Expectation-Maximization Gaussian-Mixture Approximate Message Passing , 2012, IEEE Transactions on Signal Processing.

[3]  Galen Reeves,et al.  The Sampling Rate-Distortion Tradeoff for Sparsity Pattern Recovery in Compressed Sensing , 2010, IEEE Transactions on Information Theory.

[4]  Alain Glavieux,et al.  Reflections on the Prize Paper : "Near optimum error-correcting coding and decoding: turbo codes" , 1998 .

[5]  Sergio Verdú,et al.  Randomly spread CDMA: asymptotics via statistical physics , 2005, IEEE Transactions on Information Theory.

[6]  Mikko Vehkaperä,et al.  Analysis of Regularized LS Reconstruction and Random Matrix Ensembles in Compressed Sensing , 2013, IEEE Transactions on Information Theory.

[7]  Michael Unser,et al.  Approximate Message Passing With Consistent Parameter Estimation and Applications to Sparse Learning , 2012, IEEE Transactions on Information Theory.

[8]  Mikko Vehkaperä,et al.  Signal recovery using expectation consistent approximation for linear observations , 2014, 2014 IEEE International Symposium on Information Theory.

[9]  Dongning Guo,et al.  A single-letter characterization of optimal noisy compressed sensing , 2009, 2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[10]  Babak Hassibi,et al.  A case for orthogonal measurements in linear inverse problems , 2014, 2014 IEEE International Symposium on Information Theory.

[11]  Ole Winther,et al.  S-AMP: Approximate message passing for general matrix ensembles , 2014, 2014 IEEE Information Theory Workshop (ITW 2014).

[12]  Andrea Montanari,et al.  Message-passing algorithms for compressed sensing , 2009, Proceedings of the National Academy of Sciences.

[13]  Yanting Ma,et al.  Compressive Imaging via Approximate Message Passing With Image Denoising , 2014, IEEE Transactions on Signal Processing.

[14]  Mike E. Davies,et al.  Near Optimal Compressed Sensing Without Priors: Parametric SURE Approximate Message Passing , 2014, IEEE Transactions on Signal Processing.

[15]  Sundeep Rangan,et al.  Generalized approximate message passing for estimation with random linear mixing , 2010, 2011 IEEE International Symposium on Information Theory Proceedings.

[16]  Adel Javanmard,et al.  Information-Theoretically Optimal Compressed Sensing via Spatial Coupling and Approximate Message Passing , 2011, IEEE Transactions on Information Theory.

[17]  Florent Krzakala,et al.  Probabilistic reconstruction in compressed sensing: algorithms, phase diagrams, and threshold achieving matrices , 2012, ArXiv.

[18]  Chau Yuen,et al.  On Sparse Vector Recovery Performance in Structurally Orthogonal Matrices via LASSO , 2014, IEEE Transactions on Signal Processing.

[19]  Shlomo Shamai,et al.  Support Recovery With Sparsely Sampled Free Random Matrices , 2011, IEEE Transactions on Information Theory.

[20]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[21]  Florent Krzakala,et al.  Compressed sensing and Approximate Message Passing with spatially-coupled Fourier and Hadamard matrices , 2013, ArXiv.

[22]  Sundeep Rangan,et al.  On the convergence of approximate message passing with arbitrary matrices , 2014, 2014 IEEE International Symposium on Information Theory.

[23]  Kai-Kit Wong,et al.  Analysis of Compressed Sensing with Spatially-Coupled Orthogonal Matrices , 2014, ArXiv.

[24]  Andrea Montanari,et al.  The dynamics of message passing on dense graphs, with applications to compressed sensing , 2010, 2010 IEEE International Symposium on Information Theory.

[25]  Shlomo Shamai,et al.  Estimation in Gaussian Noise: Properties of the Minimum Mean-Square Error , 2010, IEEE Transactions on Information Theory.