Nonmetric Multidimensional Scaling of Asymmetric Proximities

Nonmetric multidimensional scaling which could be applied to a square asymmetric inter-stimulus proximity matrix is presented. In the model each stimulus is represented as a point and a circle (sphere, hypersphere) whose center is at that point in a multidimensional Euclidean space. The radius of a circle (sphere, hypersphere) tells the skew-symmetry of the corresponding stimulus. In a sense the model is a nonmetric generalization of Weeks and Bentler (1982) ’s model. An algorithm to derive the coordinates of points and radii of circles (spheres, hypers-pheres) which minimize the discrepancy of the coordinates and radii from the monotone relationship with given interstimulus proximities is described. An application to car switching data among 16 car segments is represented.

[1]  E. Rosch Cognitive reference points , 1975, Cognitive Psychology.

[2]  Joseph L. Zinnes,et al.  Single and multidimensional same-different judgments , 1977 .

[3]  C. Krumhansl Concerning the applicability of geometric models to similarity data: The interrelationship between similarity and spatial density. , 1978 .

[4]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[5]  Gregory W. Cermak,et al.  Multidimensional analyses of judgments about traffic noise , 1976 .

[6]  J. Graef,et al.  THE DETERMINATION OF THE UNDERLYING DIMENSIONALITY OF AN EMPIRICALLY OBTAINED MATRIX OF PROXIMITIES. , 1974, Multivariate behavioral research.

[7]  J. Gower,et al.  Expressing complex relationships in two dimensions , 1981 .

[8]  John C. Gower,et al.  Graphical Representation of Asymmetric Matrices , 1978 .

[9]  E. Holman,et al.  Similarity judgments and recognition memory for some common spices , 1978, Perception & psychophysics.

[10]  Edward E. Smith,et al.  Categories and concepts , 1984 .

[11]  Takayuki Saito,et al.  MULTIDIMENSIONAL SCALING TO EXPLORE COMPLEX ASPECTS IN DISSIMILARITY JUDGMENT , 1986 .

[12]  J. Kruskal Nonmetric multidimensional scaling: A numerical method , 1964 .

[13]  C. Coombs A theory of data. , 1965, Psychology Review.

[14]  Wayne Stewart DeSarbo Three-way unfolding and situational dependence in consumer preference analysis , 1978 .

[15]  R. Harshman,et al.  A Model for the Analysis of Asymmetric Data in Marketing Research , 1982 .

[16]  E. Rothkopf A measure of stimulus similarity and errors in some paired-associate learning tasks. , 1957, Journal of experimental psychology.

[17]  J. Kruskal Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .

[18]  S. Schiffman Introduction to Multidimensional Scaling , 1981 .

[19]  J. Cunningham,et al.  Free trees and bidirectional trees as representations of psychological distance , 1978 .

[20]  J. Douglas Carroll Impact Scaling: Theory, Mathematical Model, and Estimation Procedures , 1977 .

[21]  W. Tobler Estimation of Attractivities from Interactions , 1979 .

[22]  Naohito Chino,et al.  A GRAPHICAL TECHNIQUE FOR REPRESENTING THE ASYMMETRIC RELATIONSHIPS BETWEEN N OBJECTS , 1978 .

[23]  Joseph L. Zinnes,et al.  Theory and Methods of Scaling. , 1958 .

[24]  K. Holyoak,et al.  Social reference points , 1983 .

[25]  R N SHEPARD,et al.  Analysis of Proximities as a Technique for the Study of Information Processing in Man1 , 1963, Human factors.

[26]  Peter M. Bentler,et al.  Restricted multidimensional scaling models for asymmetric proximities , 1982 .

[27]  G. Bower,et al.  Inconsistency in spatial knowledge , 1983, Memory & cognition.

[28]  Lance J. Rips,et al.  Semantic distance and the verification of semantic relations , 1973 .

[29]  G. Keren,et al.  Recognition models of alphanumeric characters. , 1981, Perception & psychophysics.

[30]  Waldo R. Tobler,et al.  Spatial Interaction Patterns , 1976 .

[31]  W. R. Garner,et al.  Reaction time as a measure of inter- and intraobject visual similarity: Letters of the alphabet , 1979 .

[32]  M. S. Mayzner,et al.  Application of geometric models to letter recognition: distance and density. , 1982, Journal of experimental psychology. General.

[33]  Stephen E. Fienberg,et al.  Discrete Multivariate Analysis: Theory and Practice , 1976 .

[34]  A. Tversky Features of Similarity , 1977 .

[35]  Frank Critchley,et al.  The user's guide to multidimensional scaling , 1982 .

[36]  O. D. Duncan,et al.  The American Occupational Structure , 1967 .

[37]  E. Sadalla,et al.  Reference points in spatial cognition. , 1980, Journal of experimental psychology. Human learning and memory.

[38]  Paul E. Green,et al.  On the Robustness of Multidimensional Scaling Techniques , 1975 .

[39]  N. Cliff Orthogonal rotation to congruence , 1966 .

[40]  Wesley A. Mah,et al.  Cognitive reference points in judgments of symbolic magnitude , 1982, Cognitive Psychology.

[41]  A. Tversky,et al.  Similarity, Separability, and the Triangle Inequality , 1982 .

[42]  E. Holman Monotonic models for asymmetric proximities , 1979 .

[43]  Ian Spence,et al.  A monte carlo evaluation of three nonmetric multidimensional scaling algorithms , 1972 .

[44]  John R. Hauser,et al.  Design and marketing of new products , 1980 .