Ab initio multi-configuration Dirac–Fock calculation of M1 visible transitions among the ground state multiplets of the W26 + ion

The development of fusion reactors has generated a demand for improved knowledge of the atomic properties of tungsten. Using a multi-configuration Dirac–Fock (MCDF) method with a restricted active space treatment, the wavelengths and transition probabilities of the M1 and E2 transitions in the visible light region are calculated for the ground state multiplets of W26 + ions. The theoretical wavelength (388.43 nm) for the 3H5 → 3H4 magnetic dipole transition agrees quite well with the experimental value (389.41 nm). Other transitions theoretically predicted at longer wavelengths are also in good agreement with new experimental observations. The results also indicate that the core–core correlation contributions from the 4d shell are essential to determine the transition properties accurately.

[1]  S. Morita,et al.  Database and Related Activities in Japan , 2011 .

[2]  Lithuania,et al.  Dependence of the probabilities of the electric-multipole electron transitions in W{sup 24+} on multipolarity , 2011 .

[3]  Chihiro Suzuki,et al.  Tungsten spectra recorded at the LHD and comparison with calculations , 2010 .

[4]  Z. Rudzikas,et al.  Pecularities of spectroscopic properties of W{sup 24+} , 2010 .

[5]  P. Beiersdorfer,et al.  Tungsten spectroscopy relevant to the diagnostics of ITER divertor plasmas , 2010 .

[6]  L. Debbio,et al.  Hyperscaling relations in mass-deformed conformal gauge theories , 2010, 1005.2371.

[7]  C. Fischer Towards accurate transition data for 3p2, 3p3, 3p4 levels of Fe, Co and Ni ions , 2010 .

[8]  O. Schmitz,et al.  Comparison of 13C2H4 and 13CH4 injection through graphite and tungsten limiters in TEXTOR , 2009 .

[9]  C. Biedermann,et al.  X‐ray And EUV Spectroscopy Of Highly Charged Tungsten Ions , 2009 .

[10]  Jet Efda Contributors,et al.  Development of divertor tungsten coatings for the JET ITER-like wall , 2009 .

[11]  T. Pütterich,et al.  Spectroscopy of highly charged tungsten ions relevant to fusion plasmas , 2009 .

[12]  J. Reader Spectral data for fusion energy: from W to W , 2009 .

[13]  C. Biedermann,et al.  Dielectronic and radiative recombination of Si- to N-like tungsten ions , 2009 .

[14]  G. Brown,et al.  Spectroscopy of M-shell x-ray transitions in Zn-like through Co-like W , 2009 .

[15]  Y. Liu,et al.  Hyperfine-interaction-dependent 4s4p P-3(2) lifetimes in Zn-like ions , 2008 .

[16]  H. Sakaue,et al.  Compact electron beam ion trap for spectroscopy of moderate charge state ions. , 2008, The Review of scientific instruments.

[17]  C. Skinner Atomic Physics in the Quest for Fusion Energy and ITER , 2008 .

[18]  I. P. Grant,et al.  The grasp2K relativistic atomic structure package , 2007, Comput. Phys. Commun..

[19]  C. Biedermann,et al.  X ray and EUV spectroscopic measurements of highly charged tungsten ions relevant to fusion plasmas , 2007 .

[20]  R. Neu,et al.  Tungsten: an option for divertor and main chamber plasma facing components in future fusion devices , 2005 .

[21]  C. Biedermann,et al.  Line and Band Emission from Tungsten Ions with Charge 21+ to 45+ in the 45-79 Å Range , 2001 .

[22]  Stephan Fritzsche,et al.  Ratip – a toolbox for studying the properties of open-shell atoms and ions , 2001 .

[23]  C. Proffitt,et al.  Theoretical Oscillator Strengths and Hyperfine Structure in Hg II , 1999 .

[24]  Per Jönsson,et al.  Computational Atomic Structure: An MCHF Approach , 1997 .