Ion Dynamics Study of Potato Starch + Sodium Salts Electrolyte System

The effect of different anions, namely, <path id="x53" d="M409 504l-29 -5q-16 60 -44.5 96t-86.5 36q-54 0 -82.5 -32t-28.5 -77q0 -51 30.5 -82.5t96.5 -65.5l35.5 -18t33 -19.5t33.5 -23.5l27 -25.5t24.5 -32t13.5 -36.5t6 -45q0 -80 -62 -134.5t-160 -54.5q-47 0 -98 15q-22 7 -50 21q-8 23 -27 155l30 7q7 -27 18 -52 t30 -51.5t49 -42.5t67 -16q56 0 88 32.5t32 87.5q0 51 -31.5 82t-98.5 67q-80 44 -110 73q-55 53 -55 124q0 75 56 126.5t150 51.5q53 0 126 -23z" /> <path id="x43" d="M614 175l29 -10q-33 -109 -57 -154q-121 -26 -184 -26q-90 0 -160.5 29t-112.5 77t-63.5 105.5t-21.5 119.5q0 157 108 253t277 96q36 0 71.5 -5t69 -13.5t36.5 -8.5q15 -102 20 -150l-29 -8q-20 79 -66.5 114t-128.5 35q-119 0 -187.5 -86t-68.5 -207 q0 -140 73.5 -227.5t188.5 -87.5q73 0 119.5 37.5t86.5 116.5z" /> <path id="x4E" d="M719 650v-28q-43 -2 -62 -15t-22 -44q-6 -47 -6 -169v-403h-31l-426 524h-2v-251q0 -111 6 -169q4 -37 24 -50.5t72 -16.5v-28h-237v28q45 2 64.5 16t23.5 49q6 62 6 171v220q0 54 -3 68.5t-17 32.5q-16 19 -34.5 26.5t-54.5 10.5v28h147l418 -502h3v246q0 117 -7 166 q-4 34 -24.5 47t-73.5 15v28h236z" /> , , and , on the electrical properties of starch-based polymer electrolytes has been studied. Anion size and conductivity are having an inverse trend indicating systems to be predominantly anionic conductor. Impact of anion size and multiplet forming tendency is reflected in number of charge carriers and mobility, respectively. Ion dynamics study reveals the presence of different mechanisms in different frequency ranges. Interestingly, superlinear power law (SLPL) is found to be present at <5 MHz frequency, which is further confirmed by dielectric data.

[1]  T. Tiwari,et al.  Electrical transport study of potato starch-based electrolyte system-II , 2014 .

[2]  Pramod K. Singh,et al.  Novel biopolymer gel electrolyte for dye-sensitized solar cell application. , 2013, Carbohydrate polymers.

[3]  S. Tarafdar,et al.  Morphology and ion-conductivity of gelatin-LiClO4 films: fractional diffusion analysis. , 2012, The journal of physical chemistry. B.

[4]  T. Tiwari,et al.  Electrical transport behaviour of bio-polymer electrolyte system: Potato starch + ammonium iodide , 2012 .

[5]  I. Sakellis On the origin of time-temperature superposition in disordered solids , 2011 .

[6]  T. Tiwari,et al.  Electrical transport study of potato starch-based electrolyte system , 2011 .

[7]  Shuhui Yu,et al.  Crossover from a nearly constant loss to a superlinear power-law behavior in Mn-doped Bi(Mg1/2Ti1/2)O3–PbTiO3 ferroelectrics , 2010 .

[8]  Xingxiang Zhang,et al.  1-Allyl-3-methylimidazolium chloride plasticized-corn starch as solid biopolymer electrolytes , 2009 .

[9]  Agnieszka Pawlicka,et al.  Conductivity study of a gelatin-based polymer electrolyte , 2007 .

[10]  J. Tiwari,et al.  Super-linear frequency dependence of ac conductivity of disordered Ag2S–Sb2S3 at cryogenic temperatures , 2007 .

[11]  P. Lunkenheimer,et al.  Apparent giant dielectric constants, dielectric relaxation, and ac-conductivity of hexagonal perovskites La1.2Sr2.7BO7.33 (B=Ru, Ir) , 2006, cond-mat/0606276.

[12]  C. Avellaneda,et al.  Optoelectrochemical Characterization of Electrochromic Devices with Starch Based Solid Electrolytes , 2006 .

[13]  Shihai Zhang,et al.  Modeling electrode polarization in dielectric spectroscopy: Ion mobility and mobile ion concentration of single-ion polymer electrolytes. , 2006, The Journal of chemical physics.

[14]  J. Tiwari,et al.  Ion dynamics in mechanochemically synthesized amorphous fast ionic conductor Ag2S-Sb2S3 , 2005 .

[15]  V. Finkenstadt Natural polysaccharides as electroactive polymers , 2005, Applied Microbiology and Biotechnology.

[16]  J. L. Willett,et al.  Electroactive Materials Composed of Starch , 2004 .

[17]  P. Lunkenheimer,et al.  Response of disordered matter to electromagnetic fields. , 2003, Physical review letters.

[18]  C. T. Moynihan,et al.  Comment on "Ionic conduction in glass: new information on the interrelation between the 'Jonscher behavior' and the 'Nearly constant-loss behavior' from broadband conductivity spectra". , 2001, Physical Review Letters.

[19]  B. Roling,et al.  Ionic Conduction in Glass , 2001 .

[20]  B. Roling,et al.  Ionic conduction in glass: new information on the interrelation between the "Jonscher behavior" and the "nearly constant-loss behavior" from broadband conductivity spectra. , 2001, Physical Review Letters.

[21]  S. Chandra,et al.  Mixed cation effect in silver borate ion conducting glass , 1999 .

[22]  C. Cramer,et al.  Complete conductivity spectra of fast ion conducting silver iodide/silver selenate glasses , 1998 .

[23]  S. Elliott Frequency-dependent conductivity in ionically and electronically conducting amorphous solids , 1994 .

[24]  P. Bruce,et al.  Electrochemical measurement of transference numbers in polymer electrolytes , 1987 .

[25]  Darryl P Almond,et al.  The determination of hopping rates and carrier concentrations in ionic conductors by a new analysis of ac conductivity , 1983 .

[26]  A. Jonscher Dielectric relaxation in solids , 1983 .

[27]  A. K. Jonscher,et al.  The ‘universal’ dielectric response , 1977, Nature.