As-rigid-as-possible mesh deformation and its application in hexahedral mesh generation

This paper presents an efficient and stable as-rigid-as-possible mesh deformation algorithm for planar shape deformation and hexahedral mesh generation. The deformation algorithm aims to preserve two local geometric properties: scale-invariant intrinsic variables and elastic deformation energy, which are together represented in a quadric energy function. To preserve these properties, the position of each vertex is further adjusted by iteratively minimizing this quadric energy function to meet the position constraint of the controlling points. Experimental results show that the deformation algorithm is efficient, and can obtain physically plausible results, which have the same topology structure with the original mesh. Such a mesh deformation method is useful to project the source surface mesh onto the target surfaces in hexahedral mesh generation based on sweep method, and application results show that the proposed method is feasible to mesh projection not only between similar surface contours but also dissimilar surface contours.

[1]  Marc Alexa,et al.  Laplacian mesh optimization , 2006, GRAPHITE '06.

[2]  Marc Alexa,et al.  As-rigid-as-possible shape interpolation , 2000, SIGGRAPH.

[3]  Thomas W. Sederberg,et al.  Free-form deformation of solid geometric models , 1986, SIGGRAPH.

[4]  George Celniker,et al.  Deformable curve and surface finite-elements for free-form shape design , 1991, SIGGRAPH.

[5]  Richard H. Gallagher,et al.  A general two‐dimensional, graphical finite element preprocessor utilizing discrete transfinite mappings , 1981 .

[6]  Timothy J. Tautges,et al.  Feature based hex meshing methodology: feature recognition and volume decomposition , 2001, Comput. Aided Des..

[7]  R. Dutton,et al.  Delaunay triangulation and 3D adaptive mesh generation , 1997 .

[8]  Long Chen FINITE ELEMENT METHOD , 2013 .

[9]  Timothy J. Tautges,et al.  The generation of hexahedral meshes for assembly geometry: survey and progress , 2001 .

[10]  Peisheng Gao,et al.  2-D shape blending: an intrinsic solution to the vertex path problem , 1993, SIGGRAPH.

[11]  Marc Alexa,et al.  As-rigid-as-possible surface modeling , 2007, Symposium on Geometry Processing.

[12]  John P. Lewis,et al.  Pose Space Deformation: A Unified Approach to Shape Interpolation and Skeleton-Driven Deformation , 2000, SIGGRAPH.

[13]  Kun Zhou,et al.  2D shape deformation using nonlinear least squares optimization , 2006, The Visual Computer.

[14]  Xevi Roca,et al.  An automatic and general least-squares projection procedure for sweep meshing , 2009, Engineering with Computers.

[15]  Christian Rössl,et al.  Laplacian surface editing , 2004, SGP '04.

[16]  Steven E. Benzley,et al.  GENERALIZED 3-D PAVING : AN AUTOMATED QUADRILATERAL SURFACE MESH GENERATION ALGORITHM , 1996 .

[17]  Brian Mirtich,et al.  A Survey of Deformable Modeling in Computer Graphics , 1997 .

[18]  Adam Finkelstein,et al.  A framework for geometric warps and deformations , 2002, TOGS.

[19]  Kenneth I. Joy,et al.  Free-form deformations with lattices of arbitrary topology , 1996, SIGGRAPH.

[20]  Dong Hui-yue Hexahedral mesh generation algorithm of swept volume , 2007 .

[21]  Hongji Yang,et al.  As-rigid-as-possible shape deformation and interpolation , 2008, J. Vis. Commun. Image Represent..

[22]  Patrick M. Knupp A method for hexahedral mesh shape optimization , 2003 .

[23]  Junzhou Huang,et al.  Robust mesh editing using Laplacian coordinates , 2011, Graph. Model..

[24]  Ligang Liu,et al.  A Local/Global Approach to Mesh Parameterization , 2008, Comput. Graph. Forum.

[25]  Xevi Roca,et al.  Least-squares approximation of affine mappings for sweep mesh generation: functional analysis and applications , 2012, Engineering with Computers.

[27]  Takeo Igarashi,et al.  As-rigid-as-possible shape manipulation , 2005, ACM Trans. Graph..

[28]  Alla Sheffer,et al.  Pyramid coordinates for morphing and deformation , 2004 .

[29]  Patrick M. Knupp Next-Generation Sweep Tool: A Method for Generating All-Hex Meshes on Two-and-One-Half Dimensional Geometries , 1998, IMR.