A Background Reconstruction Algorithm based on Pixel Intensity Classification in Remote Video Surveillance System 1

A background reconstruction algorithm based on pixel intensity classification is presented in this paper. Assumption that background pixel intensity appears in image sequence with the maximum probability is adopted. The pixel intensity values are classified based on the calculated pixel intensity difference between inter-frame, finally, the intensity value with the maximum frequency is selected as the background pixel intensity value. In proposed algorithm, the pre-training of no-moving object in background and the models of background and target aren't needed, and only one parameter is adjusted. Simulation results to real video surveillance sequences show that background can be reconstructed correctly, so target can be extracted perfectly and tracked successfully.

[1]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[2]  Yee-Hong Yang,et al.  Stationary background generation: An alternative to the difference of two images , 1990, Pattern Recognit..

[3]  Hamid Aghajan,et al.  Video-based freeway-monitoring system using recursive vehicle tracking , 1995, Electronic Imaging.

[4]  Olaf Munkelt,et al.  Adaptive Background Estimation and Foreground Detection using Kalman-Filtering , 1995 .

[5]  Stephen M. Smith,et al.  ASSET-2: real-time motion segmentation and shape tracking , 1995, Proceedings of IEEE International Conference on Computer Vision.

[6]  Anil K. Jain,et al.  Vehicle Segmentation and Classification Using Deformable Templates , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Alex Pentland,et al.  Pfinder: Real-Time Tracking of the Human Body , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Stuart J. Russell,et al.  Image Segmentation in Video Sequences: A Probabilistic Approach , 1997, UAI.

[9]  King Ngi Ngan,et al.  Automatic segmentation of moving objects for video object plane generation , 1998, IEEE Trans. Circuits Syst. Video Technol..

[10]  Alessandro Neri,et al.  Automatic moving object and background separation , 1998, Signal Process..

[11]  Kentaro Toyama,et al.  Wallflower: principles and practice of background maintenance , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[12]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[13]  Zhang Wen Motion Analyses under High Speed Dense Visual-Target Scenes , 2000 .

[14]  Larry S. Davis,et al.  Non-parametric Model for Background Subtraction , 2000, ECCV.

[15]  Anil K. Jain,et al.  A background model initialization algorithm for video surveillance , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[16]  P. KaewTrakulPong,et al.  An Improved Adaptive Background Mixture Model for Real-time Tracking with Shadow Detection , 2002 .

[17]  L. Davis,et al.  Background and foreground modeling using nonparametric kernel density estimation for visual surveillance , 2002, Proc. IEEE.

[18]  Cen Feng,et al.  MULTI-DISTRIBUTION MODEL FOR BACKGROUND SUBTRACTION IN LONG-TERM VIDEO SURVEILLANCE SYSTEM , 2002 .

[19]  Carlos Orrite-Uruñuela,et al.  Detected motion classification with a double-background and a Neighborhood-based difference , 2003, Pattern Recognit. Lett..

[20]  Wei-Yun Yau,et al.  An automatic drowning detection surveillance system for challenging outdoor pool environments , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.