Quantum secure direct communication against the collective noise with polarization-entangled Bell states

Quantum secure direct communication against the collective noise with polarization-entangled Bell states Li Dong1,∗, Jun-Xi Wang1, Qing-Yang Li1, Hong-Zhi Shen2, Hai-Kuan Dong1, Xiao-Ming Xiu1,3,∗, Yuan-Peng Ren4, and Ya-Jun Gao1 1 College of Mathematics and Physics, Bohai University, Jinzhou 121013, P. R. China 2 School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, P. R. China 3 Centre for Quantum Technologies, National University of Singapore, 117543, Singapore 4 College of Engineering, Bohai University, Jinzhou 121013, P. R. China ∗E-mail: donglixm@163.com, xiuxiaomingdl@126.com

[1]  Fengli Yan,et al.  Secure direct communication using Einstein-Podolsky-Rosen pairs and teleportation , 2003 .

[2]  Kae Nemoto,et al.  Weak nonlinearities and cluster states , 2007, 0704.1931.

[3]  Philippe Grangier,et al.  Quantum non-demolition measurements in optics , 1998, Nature.

[4]  Demetrios Kalamidas Feasible quantum error detection with linear optics , 2004 .

[5]  Hwayean Lee,et al.  Quantum direct communication with authentication , 2005, quant-ph/0512051.

[6]  Keiichi Edamatsu,et al.  Entangled Photons: Generation, Observation, and Characterization , 2007 .

[7]  Aephraim M. Steinberg,et al.  Amplifying single-photon nonlinearity using weak measurements. , 2010, Physical review letters.

[8]  Chuan Wang,et al.  Multi-step quantum secure direct communication using multi-particle Green–Horne–Zeilinger state , 2005 .

[9]  Yi-Hsin Chen,et al.  Demonstration of the interaction between two stopped light pulses. , 2011, Physical review letters.

[10]  Kaoru Shimizu,et al.  Communication channels secured from eavesdropping via transmission of photonic Bell states , 1999 .

[11]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[12]  X. Yi,et al.  Perfect distribution of four-photon χ-type entangled states over an arbitrary collective noise channel by spatial degree of freedom , 2013 .

[13]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[14]  X. Xiu,et al.  Information transmission with Einstein–Podolsky–Rosen pairs and imperfect Bell-state measurement , 2010 .

[15]  Chuang,et al.  Quantum bit regeneration. , 1996, Physical review letters.

[16]  Bing He,et al.  Creation of high-quality long-distance entanglement with flexible resources , 2008, 0808.2320.

[17]  D. Dieks Communication by EPR devices , 1982 .

[18]  C. Gerry,et al.  Quantum non-demolition measurement of photon number using weak nonlinearities , 2008 .

[19]  Ping Zhou,et al.  Quantum secure direct communication network with Einstein–Podolsky–Rosen pairs , 2006 .

[20]  Pieter Kok,et al.  Effects of self-phase-modulation on weak nonlinear optical quantum gates , 2007, 0710.1810.

[21]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[22]  K. Boström,et al.  Deterministic secure direct communication using entanglement. , 2002, Physical review letters.

[23]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[24]  John C. Howell,et al.  Nondestructive single-photon trigger , 2000 .

[25]  T. Spiller,et al.  Quantum computation by communication , 2005, quant-ph/0509202.

[26]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[27]  Fuguo Deng,et al.  Quantum secure direct communication with high-dimension quantum superdense coding , 2005 .

[28]  F. L. Yan,et al.  A scheme for secure direct communication using EPR pairs and teleportation , 2004 .

[29]  Zhan-jun Zhang Comment on : Quantum direct communication with authentication , 2006, quant-ph/0604125.

[30]  Fuguo Deng,et al.  Improving the security of multiparty quantum secret sharing against Trojan horse attack , 2005, quant-ph/0506194.

[31]  Xiang‐Bin Wang Fault tolerant quantum key distribution protocol with collective random unitary noise , 2005 .

[32]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[33]  G. Long,et al.  Controlled order rearrangement encryption for quantum key distribution , 2003, quant-ph/0308172.

[34]  G. J. Milburn,et al.  Quantum-information processing via a lossy bus , 2006, quant-ph/0607206.

[35]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[36]  Yamamoto,et al.  Quantum nondemolition measurement of the photon number via the optical Kerr effect. , 1985, Physical review. A, General physics.

[37]  Q. Cai Eavesdropping on the two-way quantum communication protocols with invisible photons , 2005, quant-ph/0508002.

[38]  Qing-yu Cai,et al.  Improving the capacity of the Boström-Felbinger protocol , 2003, quant-ph/0311168.

[39]  Fuguo Deng,et al.  Improving the security of secure direct communication based on the secret transmitting order of particles , 2006, quant-ph/0612016.

[40]  Li Dong,et al.  Controlled three-party communication using GHZ-like state and imperfect Bell-state measurement , 2011 .

[41]  Fuguo Deng,et al.  Reply to ``Comment on `Secure direct communication with a quantum one-time-pad' '' , 2004, quant-ph/0405177.

[42]  Barry C. Sanders,et al.  Entanglement creation with negative index metamaterials , 2012, 1205.4506.

[43]  A R Dixon,et al.  Continuous operation of high bit rate quantum key distribution , 2010, 1005.4573.

[44]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[45]  Bing He,et al.  Universal entangler with photon pairs in arbitrary states , 2008, 0806.4216.

[46]  Gerard J. Milburn,et al.  State reduction in quantum-counting quantum nondemolition measurements , 1984 .

[47]  Ite A. Yu,et al.  Electromagnetically-induced-transparency-based cross-phase-modulation at attojoule levels , 2011 .

[48]  Jeffrey H. Shapiro,et al.  Continuous-time cross-phase modulation and quantum computation , 2007 .

[49]  Christoph Simon,et al.  Cross-Kerr nonlinearity between continuous-mode coherent states and single photons , 2011, 1102.3724.

[50]  D. Bouwmeester,et al.  Bit-flip-error rejection in optical quantum communication , 2001 .

[51]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[52]  Li Dong,et al.  Distributing a multi-photon polarization-entangled state with unitary fidelity via arbitrary collective noise channels , 2015, Quantum Inf. Process..

[53]  Julio Gea-Banacloche,et al.  Impossibility of large phase shifts via the giant Kerr effect with single-photon wave packets , 2009, 0911.4682.

[54]  Jeffrey H. Shapiro,et al.  Single-photon Kerr nonlinearities do not help quantum computation , 2006 .

[55]  Kae Nemoto,et al.  The efficiencies of generating cluster states with weak nonlinearities , 2006, quant-ph/0607060.

[56]  W. Munro,et al.  A near deterministic linear optical CNOT gate , 2004 .

[57]  Zhi-Xi Wang,et al.  Deterministic secure direct communication using GHZ states and swapping quantum entanglement , 2004, quant-ph/0406082.

[58]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[59]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[60]  D. Bruß Optimal Eavesdropping in Quantum Cryptography with Six States , 1998, quant-ph/9805019.

[61]  T. Spiller,et al.  Single photon quantum non-demolition measurements in the presence of inhomogeneous broadening , 2009, 0902.2252.

[62]  Z. Xue,et al.  Circuit electromechanics with single photon strong coupling , 2015, 1506.04247.

[63]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[64]  Harald Weinfurter,et al.  Secure Communication with a Publicly Known Key , 2001 .

[65]  Wang Chuan,et al.  Quantum secure direct communication and deterministic secure quantum communication , 2007 .

[66]  Kae Nemoto,et al.  Weak nonlinearities: a new route to optical quantum computation , 2005, quant-ph/0507084.