Data Mining for Financial Applications

This chapter describes Data Mining in finance by discussing financial tasks, specifics of methodologies and techniques in this Data Mining area. It includes time dependence, data selection, forecast horizon, measures of success, quality of patterns, hypothesis evaluation, problem ID, method profile, attribute-based and relational methodologies. The second part of the chapter discusses Data Mining models and practice in finance. It covers use of neural networks in portfolio management, design of interpretable trading rules and discovering money laundering schemes using decision rules and relational Data Mining methodology.

[1]  Ruppa K. Thulasiram,et al.  Performance Evaluation of a Multithreaded Fast Fourier Transform Algorithm for Derivative Pricing , 2003, The Journal of Supercomputing.

[2]  Steven Walczak,et al.  Knowledge discovery techniques for predicting country investment risk , 2002 .

[3]  Jason Kingdon Intelligent systems and financial forecasting , 1997, Perspectives in neural computing.

[4]  Siddhartha Bhattacharyya,et al.  Adequacy of training data for evolutionary mining of trading rules , 2004, Decis. Support Syst..

[5]  Andreas S. Weigend,et al.  Data Mining for Financial Decision Making , 2002 .

[6]  Ruey S. Tsay,et al.  Analysis of Financial Time Series , 2005 .

[7]  R. Lourie,et al.  The Statistical Mechanics of Financial Markets , 2002 .

[8]  Boris Kovalerchuk,et al.  Data mining in finance: advances in relational and hybrid methods , 2000 .

[9]  Soushan Wu,et al.  Credit rating analysis with support vector machines and neural networks: a market comparative study , 2004, Decis. Support Syst..

[10]  Boris Kovalerchuk,et al.  Data mining in finance , 2000 .

[11]  Steven Walczak,et al.  An Empirical Analysis of Data Requirements for Financial Forecasting with Neural Networks , 2001, J. Manag. Inf. Syst..

[12]  Rosario N. Mantegna,et al.  Book Review: An Introduction to Econophysics, Correlations, and Complexity in Finance, N. Rosario, H. Mantegna, and H. E. Stanley, Cambridge University Press, Cambridge, 2000. , 2000 .

[13]  J. Bouchaud,et al.  Theory of financial risks : from statistical physics to risk management , 2000 .

[14]  Michael Greenstone,et al.  Are There Sectoral Anomalies Too? The Pitfalls of Unreported Multiple Hypothesis Testing and a Simple Solution , 2000 .

[15]  J. Ross Quinlan,et al.  C4.5: Programs for Machine Learning , 1992 .

[16]  Hui Wang,et al.  Data Mining for Financial Decision Making , 2002, Decis. Support Syst..

[17]  E. Michael Azoff,et al.  Neural Network Time Series: Forecasting of Financial Markets , 1994 .

[18]  Allan Timmermann,et al.  Dangers of Data-Driven Inference: The Case of Calendar Effects in Stock Returns , 1998 .

[19]  Martin Casdagli,et al.  Nonlinear Modeling And Forecasting , 1992 .

[20]  Adrian M. Cowan Data Mining in Finance: Advances in Relational and Hybrid Methods: Boris Kovalerchuk and Evgenii Vityaev (Eds.), Kluwer Academic Publishers, Norwell, Massachusetts, 2000, HB US $120, ISBN 0-7923-7804-0 , 2002 .

[21]  M.B. Haugh,et al.  Computational challenges in portfolio management , 2001, Comput. Sci. Eng..

[22]  Stephen Muggleton,et al.  Learning Structure and Parameters of Stochastic Logic Programs , 2002, ILP.

[23]  Hans-Martin Krolzig,et al.  Multiperiod forecasting in stock markets: a paradox solved , 2004, Decis. Support Syst..

[24]  Benoit B. Mandelbrot,et al.  Fractals and Scaling in Finance , 1997 .

[25]  Jess Lederman,et al.  Artificial Intelligence in the Capital Markets: State-of-the-Art Applications for Institutional Investors, Bankers and Traders , 1994 .

[26]  Stephen Muggleton,et al.  The Effect of Relational Background Knowledge on Learning of Protein Three-Dimensional Fold Signatures , 2001, Machine Learning.

[27]  Bhavani Thuraisingham,et al.  Data Mining: Technologies, Techniques, Tools, and Trends , 1998 .

[28]  Matthew Saffell,et al.  Learning to trade via direct reinforcement , 2001, IEEE Trans. Neural Networks.

[29]  J. Murphy Technical Analysis of the Futures Markets: A Comprehensive Guide to Trading Methods and Applications , 1986 .

[30]  Constantin von Altrock,et al.  Fuzzy Logic and NeuroFuzzy Applications in Business and Finance , 1996 .

[31]  Han Tong Loh,et al.  Applying rough sets to market timing decisions , 2004, Decis. Support Syst..

[32]  Jan M. Zytkow,et al.  Handbook of Data Mining and Knowledge Discovery , 2002 .

[33]  Stephen Muggleton,et al.  Scientific knowledge discovery using inductive logic programming , 1999, Commun. ACM.

[34]  H. White,et al.  Data‐Snooping, Technical Trading Rule Performance, and the Bootstrap , 1999 .

[35]  Ivan Bratko,et al.  Applications of inductive logic programming , 1995, SGAR.

[36]  Gholamreza Nakhaeizadeh,et al.  Banking and finance , 2002 .

[37]  A. Refenes Neural Networks in the Capital Markets , 1994 .

[38]  Gunnar Rätsch,et al.  Using support vector machines for time series prediction , 1999 .

[39]  Lutgarde M. C. Buydens,et al.  Using support vector machines for time series prediction , 2003 .

[40]  J A Lambert,et al.  The impact of the principles of evidence interpretation on the structure and content of statements. , 2000, Science & justice : journal of the Forensic Science Society.

[41]  Nikolaos F. Matsatsinis,et al.  Intelligent Decision Support Methods , 2003 .

[42]  Jennifer Neville,et al.  Supporting Relational Knowledge Discovery: Lessons in Architecture and Algorithm Design , 2002 .

[43]  Peter A. Flach,et al.  1BC2: A True First-Order Bayesian Classifier , 2002, ILP.

[44]  John Wang,et al.  Data Mining: Opportunities and Challenges , 2003 .

[45]  Ah Chung Tsoi,et al.  Rule inference for financial prediction using recurrent neural networks , 1997, Proceedings of the IEEE/IAFE 1997 Computational Intelligence for Financial Engineering (CIFEr).

[46]  Stavros A. Zenios,et al.  High-performance computing in finance: The last 10 years and the next , 1999, Parallel Comput..

[47]  Robert Groth,et al.  Data Mining , 1998 .

[48]  Andrew D. Back,et al.  A First Application of Independent Component Analysis to Extracting Structure from Stock Returns , 1997, Int. J. Neural Syst..

[49]  Boris Kovalerchuk,et al.  Consistent and complete data and “expert” mining in medicine , 2003 .