Chirality change in string theory

It is known that string theory compactifications leading to low energy effective theories with different chiral matter content (e.g. different numbers of standard model generations) are connected through phase transitions, described by non-trivial quantum fixed point theories. We point out that such compactifications are also connected on a purely classical level, through transitions that can be described using standard effective field theory. We illustrate this with examples, including some in which the transition proceeds entirely through supersymmetric configurations.

[1]  T. Weigand,et al.  Chiral Gepner Model Orientifolds , 2004, hep-th/0408147.

[2]  T. Weigand,et al.  Chiral Supersymmetric Gepner Model Orientifolds , 2004, hep-th/0401148.

[3]  Robert C. Helling,et al.  A World-Volume Perspective on the Recombination of Intersecting Branes , 2003, Journal of High Energy Physics.

[4]  S. Govindarajan,et al.  Crosscaps in Gepner Models and Type IIA Orientifolds , 2003, hep-th/0306257.

[5]  K. Hori,et al.  Orientifolds and mirror symmetry , 2003, hep-th/0303135.

[6]  A. Langer Semistable sheaves in positive characteristic , 2004 .

[7]  R. Blumenhagen Supersymmetric orientifolds of Gepner models , 2003, hep-th/0310244.

[8]  S. Govindarajan,et al.  Orientifolds of type IIA strings on Calabi-Yau manifolds , 2003, hep-th/0305108.

[9]  G. Shiu,et al.  Supersymmetric three family SU(5) grand unified models from type IIA orientifolds with intersecting D6-branes , 2002, hep-th/0212177.

[10]  R. Blumenhagen,et al.  The Standard Model on the Quintic , 2002, hep-th/0210083.

[11]  P. Langacker,et al.  A three-family standard-like orientifold model: Yukawa couplings and hierarchy , 2002, hep-th/0206115.

[12]  R. Blumenhagen,et al.  Orientifolds of K3 and Calabi-Yau manifolds with intersecting D-branes , 2002, hep-th/0206038.

[13]  D. joyce Lectures on special Lagrangian geometry , 2001, math/0111111.

[14]  G. Shiu,et al.  Chiral Four-Dimensional N=1 Supersymmetric Type IIA Orientifolds from Intersecting D6-Branes , 2001, hep-th/0107166.

[15]  S. Forste,et al.  Supersymmetric ZN×ZM orientifolds in 4D with D-branes at angles , 2000, hep-th/0008250.

[16]  E. Witten,et al.  A Derivation of K theory from M theory , 2000, hep-th/0005090.

[17]  B. Ovrut,et al.  Small instanton transitions in heterotic M-theory , 2000, hep-th/0001133.

[18]  R. Blumenhagen,et al.  Supersymmetric 4D orientifolds of Type IIA with D6-branes at angles , 1999, hep-th/9912204.

[19]  R. Blumenhagen,et al.  Supersymmetric orientifolds in 6D with D-branes at angles , 1999, hep-th/9908130.

[20]  B. Ovrut,et al.  Symmetric Vacua in Heterotic M-Theory , 1999, hep-th/9908100.

[21]  S. Ramgoolam,et al.  From 0-branes to torons , 1997, hep-th/9708089.

[22]  R. C. Mclean Deformations of calibrated submanifolds , 1998 .

[23]  E. Silverstein Closing the generation gap , 1997, hep-th/9709209.

[24]  Jr.,et al.  Brane dynamics from the Born-Infeld action , 1997, hep-th/9708147.

[25]  S. Kachru,et al.  Chirality-changing phase transitions in 4d string vacua , 1997, hep-th/9704185.

[26]  J. L. Potier Lectures on Vector Bundles , 1997 .

[27]  M. Douglas,et al.  Branes intersecting at angles , 1996, hep-th/9606139.

[28]  E. Witten,et al.  Anomalies, dualities, and topology of D = 6 N = 1 superstring vacua , 1996, hep-th/9605184.

[29]  E. Witten,et al.  Eleven-dimensional supergravity on a manifold with boundary , 1996, hep-th/9603142.

[30]  C. Callan,et al.  D-brane Approach to Black Hole Quantum Mechanics , 1996, hep-th/9602043.

[31]  Edward Witten,et al.  Heterotic and type I string dynamics from eleven-dimensions , 1995, hep-th/9510209.

[32]  S. Kachru Some three generation (0,2) Calabi-Yau models , 1995, hep-th/9501131.

[33]  J. Drézet Vector Bundles in Algebraic Geometry: Exceptional bundles and moduli spaces of stable sheaves on ℙn , 1995 .

[34]  E. Witten,et al.  On orbifolds with discrete torsion , 1994, hep-th/9409188.

[35]  M. Porrati,et al.  Target space duality in string theory , 1994, hep-th/9401139.

[36]  E. Witten,et al.  Calabi‐Yau Manifolds: A Bestiary for Physicists , 1992 .

[37]  Tristan Hübsck,et al.  Calabi-Yau manifolds , 1992 .

[38]  Tristan Hübsch,et al.  Calabi-Yau manifolds , 1992 .

[39]  M. Lynker,et al.  Calabi-Yau manifolds in weighted P4 , 1990 .

[40]  B. Greene,et al.  Aspects of (2,0) string compactifications , 1988 .

[41]  Michael B. Green,et al.  Superstring Theory: Volume 2, Loop Amplitudes, Anomalies and Phenomenology , 1987 .

[42]  S. Donaldson Geometry of four-manifolds , 1990 .

[43]  E. Witten New Issues in Manifolds of SU(3) Holonomy , 1986 .

[44]  H. Weldon Proof of zeta-function regularization of high-temperature expansions , 1986 .

[45]  E. Witten,et al.  Supersymmetric sigma models and the heterotic string , 1985 .

[46]  E. Witten,et al.  Vacuum configurations for superstrings , 1985 .

[47]  A. Salam,et al.  Spontaneous Compactification in Six-Dimensional Einstein-Maxwell Theory , 1983 .

[48]  Raoul Bott,et al.  The Yang-Mills equations over Riemann surfaces , 1983, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[49]  M. Maruyama On boundedness of families of torsion free sheaves , 1981 .

[50]  C. Okonek,et al.  Vector bundles on complex projective spaces , 1980 .

[51]  A. Grothendieck Sur La Classification Des Fibres Holomorphes Sur La Sphere de Riemann , 1957 .