Earth System Mass Transport Mission (e.motion): A Concept for Future Earth Gravity Field Measurements from Space

In the last decade, satellite gravimetry has been revealed as a pioneering technique for mapping mass redistributions within the Earth system. This fact has allowed us to have an improved understanding of the dynamic processes that take place within and between the Earth’s various constituents. Results from the Gravity Recovery And Climate Experiment (GRACE) mission have revolutionized Earth system research and have established the necessity for future satellite gravity missions. In 2010, a comprehensive team of European and Canadian scientists and industrial partners proposed the e.motion (Earth system mass transport mission) concept to the European Space Agency. The proposal is based on two tandem satellites in a pendulum orbit configuration at an altitude of about 370 km, carrying a laser interferometer inter-satellite ranging instrument and improved accelerometers. In this paper, we review and discuss a wide range of mass signals related to the global water cycle and to solid Earth deformations that were outlined in the e.motion proposal. The technological and mission challenges that need to be addressed in order to detect these signals are emphasized within the context of the scientific return. This analysis presents a broad perspective on the value and need for future satellite gravimetry missions.

[1]  Karsten Danzmann,et al.  Intersatellite laser ranging instrument for the GRACE follow-on mission , 2012, Journal of Geodesy.

[2]  Byron D. Tapley,et al.  Patagonia Icefield melting observed by Gravity Recovery and Climate Experiment (GRACE) , 2007 .

[3]  Eric Rignot,et al.  Mass Balance of Polar Ice Sheets , 2002, Science.

[4]  Fred F. Pollitz,et al.  Upper mantle rheology from GRACE and GPS postseismic deformation after the 2004 Sumatra‐Andaman earthquake , 2010 .

[5]  James L. Davis,et al.  Constraining hydrological and cryospheric mass flux in southeastern Alaska using space‐based gravity measurements , 2005 .

[6]  Nicolas Gruber,et al.  Towards an Integrated Observing System: In Situ Observations , 2010 .

[7]  T. Hughes,et al.  Is the west Antarctic Ice Sheet disintegrating , 1973 .

[8]  C. Jekeli Alternative methods to smooth the Earth's gravity field , 1981 .

[9]  T. Oki,et al.  Design of Total Runoff Integrating Pathways (TRIP)—A Global River Channel Network , 1998 .

[10]  Gary S. E. Lagerloef,et al.  Satellite Gravity and the Geosphere: Contributions to the Study of the Solid Earth and Its Fluid Earth , 1998 .

[11]  B. Vermeersen,et al.  Challenges From Solid Earth Dynamics for Satellite Gravity Field Missions in the Post-Goce Era , 2004 .

[12]  Reiner Rummel,et al.  Geoid and Gravity in Earth Sciences – An Overview , 2004 .

[13]  Chris W. Hughes,et al.  Why Western Boundary Currents in Realistic Oceans are Inviscid: A Link between Form Stress and Bottom Pressure Torques , 2001 .

[14]  Byron D. Tapley,et al.  Accelerated Antarctic ice loss from satellite gravity measurements , 2009 .

[15]  Jakob Flury,et al.  Future Satellite Gravimetry and Earth Dynamics , 2006 .

[16]  Scott B. Luthcke,et al.  Simulation study of a follow-on gravity mission to GRACE , 2012, Journal of Geodesy.

[17]  Roland Fleddermann,et al.  Laser Ranging Instrument for the GRACE Follow-on mission , 2013 .

[18]  Michael G. Sideris,et al.  Use of GRACE determined secular gravity rates for glacial isostatic adjustment studies in North-America , 2008 .

[19]  M. Watkins,et al.  The gravity recovery and climate experiment: Mission overview and early results , 2004 .

[20]  J. Mitrovica,et al.  Ice sheets, sea level and the dynamic earth , 2002 .

[21]  James L. Davis,et al.  Geodetic Constraints on Glacial Isostatic Adjustment , 2013 .

[22]  Andrea Bordoni,et al.  Clearing observed PGR in GRACE data aimed at global viscosity inversion: Weighted Mass Trends technique , 2009 .

[23]  Isabelle Panet,et al.  Can tectonic processes be recovered from new gravity satellite data , 2004 .

[24]  Guillaume Ramillien,et al.  Sea level budget over 2003-2008: A reevaluation from GRACE space gravimetry, satellite altimetry and Argo , 2009 .

[25]  M. Camp,et al.  Retrieving earthquake signature in grace gravity solutions , 2008 .

[26]  G. Beutler,et al.  Earth gravity field from space : from sensors to earth sciences : proceedings of an ISSI workshop, 11-15 March 2002, Bern, Switzerland , 2003 .

[27]  J. Kusche,et al.  Hydrological Signals Observed by the GRACE Satellites , 2008 .

[28]  Olaf Boebel,et al.  Progressing towards global sustained deep ocean observations , 2010 .

[29]  Rory J. Bingham,et al.  Boundary wave communication of bottom pressure and overturning changes for the North Atlantic , 2008 .

[30]  John C. Ries,et al.  Effects of ice melting on GRACE observations of ocean mass trends , 2007 .

[31]  S. Swenson,et al.  Methods for inferring regional surface‐mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time‐variable gravity , 2002 .

[32]  J. Bamber,et al.  Reassessment of the Potential Sea-Level Rise from a Collapse of the West Antarctic Ice Sheet , 2009, Science.

[33]  Clark R. Wilson,et al.  Simulated estimation of hydrological loads from GRACE , 2005 .

[34]  G. Hegerl,et al.  Understanding and Attributing Climate Change , 2007 .

[35]  A. Fischer,et al.  THE GLOBAL OCEAN OBSERVING SYSTEM (GOOS) , 1999 .

[36]  Eric Rignot,et al.  Recent Antarctic ice mass loss from radar interferometry and regional climate modelling , 2008 .

[37]  Ingo Sasgen,et al.  Satellite gravimetry observation of Antarctic snow accumulation related to ENSO , 2010 .

[38]  Nicolas Gruber,et al.  TOWARDS AN INTEGRATED GLOBAL OBSERVING SYSTEM : IN-SITU OBSERVATIONS , 2011 .

[39]  J. Famiglietti,et al.  Satellite-based estimates of groundwater depletion in India , 2009, Nature.

[40]  Bradford H. Hager,et al.  Mantle Viscosity: A Comparison of Models from Postglacial Rebound and from the Geoid, Plate Driving Forces, and Advected Heat Flux , 1991 .

[41]  I. Velicogna Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE , 2009 .

[42]  M. R. van den Broeke,et al.  Partitioning Recent Greenland Mass Loss , 2009, Science.

[43]  Chen Ji,et al.  Crustal Dilatation Observed by GRACE After the 2004 Sumatra-Andaman Earthquake , 2006, Science.

[44]  Konrad Steffen,et al.  Surface Melt-Induced Acceleration of Greenland Ice-Sheet Flow , 2002, Science.

[45]  M. Tamisiea,et al.  GRACE Gravity Data Constrain Ancient Ice Geometries and Continental Dynamics over Laurentia , 2007, Science.

[46]  Andreas Güntner,et al.  Improvement of Global Hydrological Models Using GRACE Data , 2008 .

[47]  Dennis P. Lettenmaier,et al.  Hydrology: Water from on high , 2006, Nature.

[48]  E. Rignot,et al.  Changes in the Velocity Structure of the Greenland Ice Sheet , 2006, Science.

[49]  S. Swenson,et al.  Satellites measure recent rates of groundwater depletion in California's Central Valley , 2011 .

[50]  M. Rothacher,et al.  The Global Geodetic Observing System , 2007 .

[51]  Archie Paulson,et al.  FAST TRACK PAPER: Inference of mantle viscosity from GRACE and relative sea level data , 2007 .

[52]  Chris W. Hughes,et al.  Identifying the causes of sea-level change , 2009 .

[53]  W. R. Peltier,et al.  Glacial isostatic adjustment and the free air gravity anomaly as a constraint on deep mantle viscosity , 1983 .

[54]  L. Hinzman,et al.  Observations: Changes in Snow, Ice and Frozen Ground , 2007 .

[55]  I. Fukumori,et al.  Antarctic Circumpolar Current Transport Variability during 2003–05 from GRACE , 2007 .

[56]  Frappart Frédéric,et al.  Contribution of GRACE Satellite Gravimetry in Global and Regional Hydrology, and in Ice Sheets Mass Balance , 2012 .

[57]  A. Cazenave,et al.  Time-variable gravity from space and present-day mass redistribution in theEarth system , 2010 .

[58]  Andrea Bordoni,et al.  Isolating the PGR signal in the GRACE data: impact on mass balance estimates in Antarctica and Greenland , 2008 .

[59]  Gerhard Beutler Earth Gravity Field from Space – From Sensors to Earth Sciences: Closing Remarks , 2004 .

[60]  D. Vaughan,et al.  Antarctic ice-sheet loss driven by basal melting of ice shelves , 2012, Nature.

[61]  Matthew Rodell,et al.  Detectability of variations in continental water storage from satellite observations of the time dependent gravity field , 1999 .

[62]  Guillaume Ramillien,et al.  Detection of Continental Hydrology and Glaciology Signals from GRACE: A Review , 2008 .

[63]  Rory J. Bingham,et al.  Signature of the Atlantic meridional overturning circulation in sea level along the east coast of North America , 2009 .

[64]  Rory J. Bingham,et al.  The relationship between sea‐level and bottom pressure variability in an eddy permitting ocean model , 2008 .

[65]  Frank G. Lemoine,et al.  Design considerations for a dedicated gravity recovery satellite mission consisting of two pairs of satellites , 2012, Journal of Geodesy.

[66]  Anny Cazenave,et al.  Contemporary sea level rise. , 2010, Annual review of marine science.

[67]  Jürgen Kusche,et al.  Mass distribution and mass transport in the Earth system , 2012 .

[68]  Enzo Boschi,et al.  Glacial isostasy, sea-level and mantle rheology , 1991 .

[69]  Nico Sneeuw,et al.  Space-borne gravimetric satellite constellations and ocean tides: aliasing effects , 2010 .

[70]  M. Tamisiea,et al.  Ongoing glacial isostatic contributions to observations of sea level change , 2011 .

[71]  Ingo Sasgen,et al.  Towards the inversion of GRACE gravity fields for present-day ice-mass changes and glacial-isostatic adjustment in North America and Greenland , 2012 .

[72]  Petra Döll,et al.  GRACE observations of changes in continental water storage , 2006 .

[73]  F. Bryan,et al.  Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE , 1998 .

[74]  S. P. Anderson,et al.  Glaciers Dominate Eustatic Sea-Level Rise in the 21st Century , 2007, Science.

[75]  F. Sansò,et al.  First GOCE gravity field models derived by three different approaches , 2011 .

[76]  H. Plag,et al.  Global geodetic observing system : meeting the requirements of a global society on a changing planet in 2020 , 2009 .

[77]  F. Pollitz,et al.  Mantle Flow Beneath a Continental Strike-Slip Fault: Postseismic Deformation After the 1999 Hector Mine Earthquake , 2001, Science.

[78]  D. Chambers,et al.  GRACE observes small‐scale mass loss in Greenland , 2008 .

[79]  J. Mitrovica,et al.  Radial profile of mantle viscosity: Results from the joint inversion of convection and postglacial , 1997 .

[80]  Nico Sneeuw,et al.  Science Requirements on Future Missions and Simulated Mission Scenarios , 2004 .

[81]  Rory J. Bingham,et al.  Determining North Atlantic meridional transport variability from pressure on the western boundary: A model investigation , 2008 .

[82]  R. Rummel,et al.  GOCE gravitational gradiometry , 2011 .