Description and Evaluation of the MIT Earth System Model (MESM)

Author(s): Sokolov, A; Kicklighter, D; Schlosser, A; Wang, C; Monier, E; Brown-Steiner, B; Prinn, R; Forest, C; Gao, X; Libardoni, A; Eastham, S | Abstract: ©2018. The Authors. The Massachusetts Institute of Technology Integrated Global System Model (IGSM) is designed for analyzing the global environmental changes that may result from anthropogenic causes, quantifying the uncertainties associated with the projected changes, and assessing the costs and environmental effectiveness of proposed policies to mitigate climate risk. The IGSM consists of the Massachusetts Institute of Technology Earth System Model (MESM) of intermediate complexity and the Economic Projections and Policy Analysis model. This paper documents the current version of the MESM, which includes a two-dimensional (zonally averaged) atmospheric model with interactive chemistry coupled to the zonally averaged version of Global Land System model and an anomaly-diffusing ocean model.

[1]  Larry W. Thomason,et al.  Climate forcings in Goddard Institute for Space Studies SI2000 simulations , 2002 .

[2]  K. Butterbach‐Bahl,et al.  Nitrous oxide emissions from soils: how well do we understand the processes and their controls? , 2013, Philosophical Transactions of the Royal Society B: Biological Sciences.

[3]  Mark Z. Jacobson,et al.  Comparison of model estimates of the effects of aviation emissions on atmospheric ozone and methane , 2013 .

[4]  A. P. Sokolov,et al.  Description and validation of the MIT version of GISS 2-D model , 1995 .

[5]  K. Taylor,et al.  Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere‐ocean climate models , 2012 .

[6]  Yuexin Liu,et al.  Modeling the emissions of nitrous oxide (N₂O) and methane (CH₄) from the terrestrial biosphere to the atmosphere , 1996 .

[7]  J. Melillo,et al.  Indirect Emissions from Biofuels: How Important? , 2009, Science.

[8]  Thomas M. Smith,et al.  Seasonal oceanic heat transports computed from an atmospheric model and ocean temperature climatology , 1989 .

[9]  Ronald G. Prinn,et al.  Global modeling of soil nitrous oxide emissions from natural processes , 2013 .

[10]  S. Bony,et al.  How Well Do We Understand and Evaluate Climate Change Feedback Processes , 2006 .

[11]  Peter H. Stone,et al.  Development of a two-dimensional zonally averaged statistical-dynamical model. III - The parameterization of the eddy fluxes of heat and moisture , 1990 .

[12]  Sergey Paltsev,et al.  Analysis of climate policy targets under uncertainty , 2012, Climatic Change.

[13]  Zbigniew Klimont,et al.  The last decade of global anthropogenic sulfur dioxide: 2000–2011 emissions , 2013 .

[14]  Andrei P. Sokolov,et al.  A global interactive chemistry and climate model: Formulation and testing , 1998 .

[15]  Pierre Friedlingstein,et al.  Twenty-First-Century Compatible CO2 Emissions and Airborne Fraction Simulated by CMIP5 Earth System Models under Four Representative Concentration Pathways , 2013, Journal of Climate.

[16]  Andrei P. Sokolov,et al.  Probabilistic projections of 21st century climate change over Northern Eurasia , 2013 .

[17]  John M. Reilly,et al.  Effects of Air Pollution Control on Climate , 2005 .

[18]  Inez Y. Fung,et al.  Global climate changes as forecast by Goddard Institute for Space Studies three‐dimensional model , 1988 .

[19]  Sergey Paltsev,et al.  Uncertainty in Greenhouse Emissions and Costs of Atmospheric Stabilization , 2008 .

[20]  J. Balesdenta,et al.  Relationship of soil organic matter dynamics to physical protection and tillage , 2000 .

[21]  Andrei P. Sokolov,et al.  Constraining climate model parameters from observed 20th century changes , 2008 .

[22]  Andrei P. Sokolov,et al.  Rising methane emissions in response to climate change in Northern Eurasia during the 21st century , 2011 .

[23]  Menner A. Tatang,et al.  An efficient method for parametric uncertainty analysis of numerical geophysical models , 1997 .

[24]  Chien Wang,et al.  A Modeling Study on the Climate Impacts of Black Carbon Aerosols , 2002 .

[25]  M. Claussen,et al.  EMIC Intercomparison Project (EMIP–CO2): comparative analysis of EMIC simulations of climate, and of equilibrium and transient responses to atmospheric CO2 doubling , 2005 .

[26]  D. Lawrence,et al.  Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model , 2011 .

[27]  Shoji Hashimoto Correction: A New Estimation of Global Soil Greenhouse Gas Fluxes Using a Simple Data-Oriented Model , 2012, PLoS ONE.

[28]  T. Andrews,et al.  Evaluating adjusted forcing and model spread for historical and future scenarios in the CMIP5 generation of climate models , 2013 .

[29]  Andrei P. Sokolov,et al.  Linking a global terrestrial biogeochemical model and a 2‐dimensional climate model: implications for the global carbon budget , 1997 .

[30]  Robert F. Adler,et al.  Estimating Climatological Bias Errors for the Global Precipitation Climatology Project (GPCP) , 2012 .

[31]  Ronald G. Prinn,et al.  Joint Program on the Science and Policy of Global Change Methane Fluxes Between Terrestrial Ecosystems and the Atmosphere at Northern High Latitudes During the Past Century : A Retrospective Analysis with a Process-Based Biogeochemistry Model , 2004 .

[32]  J. Randerson,et al.  Systematic assessment of terrestrial biogeochemistry in coupled climate–carbon models , 2009 .

[33]  Jonathan M. Gregory,et al.  Use of an upwelling-diffusion energy balance climate model to simulate and diagnose A/OGCM results , 2001 .

[34]  Zbigniew Klimont,et al.  Anthropogenic sulfur dioxide emissions: 1850–2005 , 2010 .

[35]  Andrei P. Sokolov,et al.  Transient climate change and net ecosystem production of the terrestrial biosphere , 1998, Global Biogeochemical Cycles.

[36]  Sergey Paltsev,et al.  Potential influence of climate-induced vegetation shifts on future land use and associated land carbon fluxes in Northern Eurasia , 2014 .

[37]  Joeri Rogelj,et al.  Global warming under old and new scenarios using IPCC climate sensitivity range estimates , 2012 .

[38]  John F. Mustard,et al.  Greenhouse gas emissions from alternative futures of deforestation and agricultural management in the southern Amazon , 2010, Proceedings of the National Academy of Sciences.

[39]  Henry D. Jacoby,et al.  Integrated Global System Model for Climate Policy Assessment: Feedbacks and Sensitivity Studies , 1999 .

[40]  John M. Reilly,et al.  Land carbon sequestration within the conterminous United States: Regional‐ and state‐level analyses , 2015 .

[41]  R. Colman,et al.  A comparison of climate feedbacks in general circulation models , 2003 .

[42]  S. Levitus,et al.  World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010 , 2012 .

[43]  Karl E. Taylor,et al.  An overview of CMIP5 and the experiment design , 2012 .

[44]  J. Randerson,et al.  Technical Description of version 4.0 of the Community Land Model (CLM) , 2010 .

[45]  I. C. Prentice,et al.  Carbon balance of the terrestrial biosphere in the Twentieth Century: Analyses of CO2, climate and land use effects with four process‐based ecosystem models , 2001 .

[46]  Inez Y. Fung,et al.  Climate Sensitivity: Analysis of Feedback Mechanisms , 2013 .

[47]  Andrei P. Sokolov,et al.  A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration , 2005 .

[48]  J. Hansen,et al.  CMIP5 historical simulations (1850–2012) with GISS ModelE2 , 2014 .

[49]  Jiming Jin,et al.  Modeling Air–Land–Sea Interactions Using the Integrated Regional Model System in Monterey Bay, California , 2012 .

[50]  G. Dion,et al.  Greenhouse Gas Emissions , 2015 .

[51]  Rik Leemans,et al.  Global 30-Year Mean Monthly Climatology, 1930-1960, V2.1 (Cramer and Leeman) , 1999 .

[52]  Martin B. Stolpe,et al.  Robust comparison of climate models with observations using blended land air and ocean sea surface temperatures , 2015 .

[53]  W. Collins,et al.  Evaluation of climate models , 2013 .

[54]  John M. Reilly,et al.  Protected areas’ role in climate-change mitigation , 2015, Ambio.

[55]  Shoji Hashimoto,et al.  A New Estimation of Global Soil Greenhouse Gas Fluxes Using a Simple Data-Oriented Model , 2012, PloS one.

[56]  David M. Lawrence,et al.  Improved simulation of the terrestrial hydrological cycle in permafrost regions by the Community Land Model , 2012 .

[57]  Andrei P. Sokolov,et al.  Climate impacts of a large‐scale biofuels expansion , 2013 .

[58]  Andrei P. Sokolov,et al.  Quantifying Uncertainties in Climate System Properties with the Use of Recent Climate Observations , 2002, Science.

[59]  Andrei P. Sokolov,et al.  Changing the Climate Sensitivity of an Atmospheric General Circulation Model through Cloud Radiative Adjustment , 2012 .

[60]  Andrei P. Sokolov,et al.  Climate Dynamics (2006) DOI 10.1007/s00382-005-0092-6 , 2005 .

[61]  Andrei P. Sokolov,et al.  Does Model Sensitivity to Changes in CO2 Provide a Measure of Sensitivity to Other Forcings , 2006 .

[62]  Jiancheng Shi,et al.  A soil moisture assimilation scheme based on the microwave Land Emissivity Model and the Community Land Model , 2012 .

[63]  Kevin Cowtan,et al.  Reconciled climate response estimates from climate models and the energy budget of Earth , 2016 .

[64]  Qing Zhu,et al.  Modeling the effects of organic nitrogen uptake by plants on the carbon cycling of boreal forest and tundra ecosystems , 2013 .

[65]  John M. Reilly,et al.  Future Effects of Ozone on Carbon Sequestration and Climate Change Policy Using a Global Biogeochemical Model , 2005 .

[66]  R. Ceulemans,et al.  Forest response to elevated CO2 is conserved across a broad range of productivity. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[67]  David Cook,et al.  Quantification of terrestrial ecosystem carbon dynamics in the conterminous United States combining a process-based biogeochemical model and MODIS and AmeriFlux data , 2011 .

[68]  Chris E. Forest,et al.  Correction to “Sensitivity of distributions of climate system properties to the surface temperature data set” , 2013 .

[69]  R. Schnur,et al.  Climate-carbon cycle feedback analysis: Results from the C , 2006 .

[70]  C. Tebaldi,et al.  Long-term Climate Change: Projections, Commitments and Irreversibility , 2013 .

[71]  Carlos C Cerri,et al.  Historical carbon emissions and uptake from the agricultural frontier of the Brazilian Amazon. , 2011, Ecological applications : a publication of the Ecological Society of America.

[72]  Andrei P. Sokolov,et al.  A flexible climate model for use in integrated assessments , 1998 .

[73]  Channing Arndt,et al.  Climate Change and Economic Growth Prospects for Malawi: An Uncertainty Approach , 2014 .

[74]  R. Dickinson,et al.  The land surface climatology of the community land model coupled to the NCAR community climate model , 2002 .

[75]  S. Raper,et al.  An Observationally Based Estimate of the Climate Sensitivity , 2002 .

[76]  Sergey Paltsev,et al.  Probabilistic forecast for twenty-first-century climate based on uncertainties in emissions (without policy) and climate parameters. , 2009 .

[77]  Sergey Paltsev,et al.  Potential Direct and Indirect Effects of Global Cellulosic Biofuel Production on Greenhouse Gas Fluxes from Future Land-use Chage , 2012 .

[78]  Andrei P. Sokolov,et al.  Comparing Oceanic Heat Uptake in AOGCM Transient Climate Change Experiments , 2003 .

[79]  I. Musat,et al.  Evaluation of a component of the cloud response to climate change in an intercomparison of climate models , 2006 .

[80]  H. Damon Matthews,et al.  The proportionality of global warming to cumulative carbon emissions , 2009, Nature.

[81]  Michael E. Schlesinger,et al.  Objective estimation of the probability density function for climate sensitivity , 2001 .

[82]  Josep Calbó,et al.  Parameterization of urban subgrid scale processes in global atmospheric chemistry models , 1998 .

[83]  J. Janowiak,et al.  The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present) , 2003 .

[84]  Chris E. Forest,et al.  Sensitivity of distributions of climate system properties to the surface temperature dataset , 2011 .

[85]  Peter S. Curtis,et al.  A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology , 1998, Oecologia.

[86]  M. Sarofim,et al.  Uncertainty in emissions projections for climate models , 2002 .

[87]  Wallace S. Broecker,et al.  Carbon uptake experiments with a zonally-averaged global ocean circulation model , 1994 .

[88]  A. McGuire,et al.  Global climate change and terrestrial net primary production , 1993, Nature.

[89]  E. Rastetter,et al.  Potential Net Primary Productivity in South America: Application of a Global Model. , 1991, Ecological applications : a publication of the Ecological Society of America.

[90]  Hanqin Tian,et al.  The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United States , 1999 .

[91]  Peter H. Stone,et al.  Efficient Three-Dimensional Global Models for Climate Studies: Models I and II , 1983 .

[92]  J. Hansen,et al.  CMIP 5 historical simulations ( 1850 – 2012 ) with GISS ModelE 2 , 2014 .

[93]  Andrei P. Sokolov,et al.  Consequences of Considering Carbon–Nitrogen Interactions on the Feedbacks between Climate and the Terrestrial Carbon Cycle , 2008 .

[94]  Sergey Paltsev,et al.  Developing a Consistent Database for Regional Geologic CO2 Storage Capacity Worldwide , 2017 .

[95]  Andrei P. Sokolov,et al.  Historical and idealized climate model experiments : An EMIC intercomparison , 2012 .

[96]  Stan D. Wullschleger,et al.  Tree responses to rising CO2 in field experiments: implications for the future forest , 1999 .

[97]  Bin Zhao,et al.  The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). , 2017, Journal of climate.

[98]  Andrei P. Sokolov,et al.  Uncertainty in atmospheric CO₂ predictions from a parametric uncertainty analysis of a global carbon cycle model , 2001 .

[99]  Wolfgang Cramer,et al.  Earth-system models of intermediate complexity , 1999 .

[100]  D. Streets,et al.  Climate simulations for 1880–2003 with GISS modelE , 2006, physics/0610109.

[101]  Sergey Paltsev,et al.  Global economic effects of changes in crops, pasture, and forests due to changing climate, carbon dioxide, and ozone , 2007 .

[102]  Veronika Eyring,et al.  Evaluation of Climate Models. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change , 2013 .

[103]  T. Wigley,et al.  Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6 - Part 1: Model description and calibration , 2011 .

[104]  S. Wullschleger,et al.  Photosynthetic acclimation in trees to rising atmospheric CO2: A broader perspective , 1994, Photosynthesis Research.

[105]  Ronald G. Prinn,et al.  Probabilistic Forecast for 21st Century Climate Based on Uncertainties in Emissions , 2009 .

[106]  Lukas H. Meyer,et al.  Summary for Policymakers , 2022, The Ocean and Cryosphere in a Changing Climate.

[107]  Jason Lowe,et al.  Model structure in observational constraints on transient climate response , 2015, Climatic Change.

[108]  P. Jones,et al.  Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set , 2012 .

[109]  Zhangcai Qin,et al.  Estimating wetland methane emissions from the northern high latitudes from 1990 to 2009 using artificial neural networks , 2013 .

[110]  J. Hansen,et al.  Stratospheric aerosol optical depths, 1850–1990 , 1993 .

[111]  John M. Reilly,et al.  Human-induced climate change : an interdisciplinary assessment , 2007 .

[112]  John M. Reilly,et al.  Effects of Air Pollution Control on Climate , 2005 .

[113]  Pierre Friedlingstein,et al.  Uncertainties in CMIP5 Climate Projections due to Carbon Cycle Feedbacks , 2014 .

[114]  Chris E. Forest,et al.  Quantifying the Likelihood of Regional Climate Change: A Hybridized Approach , 2013 .

[115]  Sergey Paltsev,et al.  Long-term economic modeling for climate change assessment , 2016 .

[116]  Andrei P. Sokolov,et al.  A Global Land System Framework for Integrated Climate-Change Assessments , 2007 .

[117]  Steven W. Running,et al.  Modeled responses of terrestrial ecosystems to elevated atmospheric CO2: a comparison of simulations by the biogeochemistry models of the Vegetation/Ecosystem Modeling and Analysis Project (VEMAP) , 1998, Oecologia.

[118]  Atul K. Jain,et al.  Global Carbon Budget 2016 , 2016 .

[119]  Emmanouil N. Anagnostou,et al.  Improving the representation of river–groundwater interactions in land surface modeling at the regional scale: Observational evidence and parameterization applied in the Community Land Model , 2012 .

[120]  C. Adam Schlosser,et al.  Mid-Western US heavy summer-precipitation in regional and global climate models: the impact on model skill and consensus through an analogue lens , 2019, Climate Dynamics.

[121]  Frank Lunkeit,et al.  Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models , 2002 .

[122]  Benjamin Poulter,et al.  Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP) , 2012 .

[123]  Thomas M. Smith,et al.  Improved Reconstruction of Global Precipitation since 1900 , 2012 .

[124]  Andrei P. Sokolov,et al.  A Three-Dimensional Ocean-Seaice-Carbon Cycle Model and its Coupling to a Two-Dimensional Atmospheric Model: Uses in Climate Change Studies , 2005 .

[125]  Andrei P. Sokolov,et al.  An efficient climate model with a 3D ocean and statistical–dynamical atmosphere* , 2002 .

[126]  Andrei P. Sokolov,et al.  Evaluating the Use of Ocean Models of Different Complexity in Climate Change Studies , 2005 .

[127]  Sergey Paltsev,et al.  The MIT Emissions Prediction and Policy Analysis (EPPA) Model: Version 4 , 2005 .

[128]  Philip J. Wolfe,et al.  Impact of aviation on climate: FAA’s Aviation Climate Change Research Initiative (ACCRI) Phase II , 2016 .

[129]  M. Sarofim,et al.  Uncertainty Analysis of Climate Change and Policy Response , 2003 .

[130]  Andrei P. Sokolov,et al.  Long-Term climate change commitment and reversibility: An EMIC intercomparison , 2013 .

[131]  Ge Liu,et al.  Response of the East Asian climate system to water and heat changes of global frozen soil using NCAR CAM model , 2012 .

[132]  Sergey Paltsev,et al.  Using land to mitigate climate change: hitting the target, recognizing the trade-offs. , 2012, Environmental science & technology.

[133]  Myles R. Allen,et al.  Constraining the Ratio of Global Warming to Cumulative CO2 Emissions Using CMIP5 Simulations , 2013 .

[134]  Catherine Prigent,et al.  Present state of global wetland extent and wetland methane modelling: methodology of a model inter-comparison project (WETCHIMP) , 2012 .

[135]  Andrei P. Sokolov,et al.  Permafrost degradation and methane: low risk of biogeochemical climate-warming feedback , 2013 .

[136]  A. McGuire,et al.  Interactions between carbon and nitrogen dynamics in estimating net primary productivity for potential vegetation in North America , 1992 .

[137]  Jerry M. Melillo,et al.  The Role of Nitrogen in the Response of Forest Net Primary Production to Elevated Atmospheric Carbon Dioxide , 1995 .

[138]  John F. B. Mitchell,et al.  Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models , 1990 .

[139]  Andrei P. Sokolov,et al.  A framework for modeling uncertainty in regional climate change , 2014, Climatic Change.

[140]  F. Joos,et al.  Probabilistic climate change projections using neural networks , 2003 .

[141]  G. Kopp,et al.  A new, lower value of total solar irradiance: Evidence and climate significance , 2011 .

[142]  Kenneth Strzepek,et al.  Projections of Water Stress Based on an Ensemble of Socioeconomic Growth and Climate Change Scenarios: A Case Study in Asia , 2016, PloS one.

[143]  Ronald G. Prinn,et al.  Linking local air pollution to global chemistry and climate , 2000 .

[144]  Andrei P. Sokolov,et al.  Investigating the Causes of the Response of the Thermohaline Circulation to Past and Future Climate Changes , 2006 .

[145]  Ronald G. Prinn,et al.  Effects of ozone on net primary production and carbon sequestration in the conterminous United States using a biogeochemistry model , 2004 .

[146]  I. Musat,et al.  On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles , 2006 .

[147]  Sergey Paltsev,et al.  The future of global water stress: An integrated assessment , 2014 .

[148]  Julie A. Vano,et al.  Hydrologic Sensitivities of Colorado River Runoff to Changes in Precipitation and Temperature , 2012 .

[149]  Peter H. Stone,et al.  Development of a two-dimensional zonally averaged statistical-dynamical model. II - The role of eddy momentum fluxes in the general circulation and their parameterization , 1987 .

[150]  Atul K. Jain,et al.  Global Carbon Budget 2018 , 2014, Earth System Science Data.

[151]  Robert E. Dickinson,et al.  Examining vegetation feedbacks on global warming in the Community Earth System Model , 2012 .

[152]  Julia C. Hargreaves,et al.  Long-term climate commitments projected with climate-carbon cycle models , 2008 .

[153]  W. Green Studies in soil physics : I. The flow of air and water through soils , 1911 .

[154]  A. Sokolova,et al.  Global economic effects of changes in crops , pasture , and forests due to changing climate , carbon dioxide , and ozone , 2006 .

[155]  Sergey Paltsev,et al.  MIT Integrated Global System Model (IGSM) Version 2: Model Description and Baseline Evaluation , 2005 .

[156]  Veronika Eyring,et al.  Ozone database in support of CMIP5 simulations: results and corresponding radiative forcing , 2011 .

[157]  G. Russell,et al.  Research paperSeasonal oceanic heat transports computed from an atmospheric model , 1985 .

[158]  Alex Gordon Libardoni Improving Constraints on Climate System Properties with Additional Data and New Methods , 2016 .

[159]  Xiangming Xiao,et al.  Equilibrium responses of global net primary production and carbon storage to doubled atmospheric carbon dioxide: Sensitivity to changes in vegetation nitrogen concentration , 1997 .