Kinetic studies on the effect of yeast cofilin on yeast actin polymerization.

The effect of yeast cofilin on the kinetics of polymerization of yeast actin has been examined at 20 degrees C at both pH 8.0 and 6.6. In the absence of cofilin, the kinetic data may be described by a simple nucleation-elongation mechanism. Kinetic data in the presence of cofilin suggests a complex dependence on the cofilin concentration. At low cofilin-to-actin ratios, cofilin increases the rate of polymerization in a way best fit by assuming filament fragmentation. The apparent fragmentation rate constants increase with increasing cofilin concentration leveling off above a cofilin-to-actin ratio of 1:8 and are independent of pH. At higher cofilin-to-actin ratios, a nonpolymerizable cofilin-G-actin complex forms resulting in a decreased rate of polymerization. The data from fluorescence photobleaching recovery experiments at low cofilin-to-actin ratios are consistent with the presence of severed filaments at both pH 8 and 6.6. However, at pH 8 and a cofilin-to-actin ratio of 1:16, about 40-50% of the total actin is present as G-actin after polymerization while at pH 6.6 little or no G-actin is present at the same cofilin-to-actin ratio. The results suggest some cooperativity with respect to cofilin binding to filamentous actin which may be pH dependent.