Gene silencing by microRNAs: contributions of translational repression and mRNA decay

[1]  N. Sonenberg,et al.  Pervasive and cooperative deadenylation of 3'UTRs by embryonic microRNA families. , 2010, Molecular cell.

[2]  Elisa Izaurralde,et al.  Two PABPC1-binding sites in GW182 proteins promote miRNA-mediated gene silencing , 2010, The EMBO journal.

[3]  W. Filipowicz,et al.  The widespread regulation of microRNA biogenesis, function and decay , 2010, Nature Reviews Genetics.

[4]  Detlef Weigel,et al.  A Collection of Target Mimics for Comprehensive Analysis of MicroRNA Function in Arabidopsis thaliana , 2010, PLoS genetics.

[5]  Nicholas T. Ingolia,et al.  Mammalian microRNAs predominantly act to decrease target mRNA levels , 2010, Nature.

[6]  E. Izaurralde,et al.  Role of GW182 proteins and PABPC1 in the miRNA pathway: a sense of déjà vu , 2010, Nature Reviews Molecular Cell Biology.

[7]  G. Kozlov,et al.  Structural Basis of Binding of P-body-associated Proteins GW182 and Ataxin-2 by the Mlle Domain of Poly(A)-binding Protein* , 2010, The Journal of Biological Chemistry.

[8]  R. Jackson,et al.  The mechanism of eukaryotic translation initiation and principles of its regulation , 2010, Nature Reviews Molecular Cell Biology.

[9]  J. Doudna,et al.  Structural insights into the human GW182-PABC interaction in microRNA-mediated deadenylation , 2010, Nature Structural &Molecular Biology.

[10]  J. Belasco,et al.  CCR4-NOT Deadenylates mRNA Associated with RNA-Induced Silencing Complexes in Human Cells , 2010, Molecular and Cellular Biology.

[11]  M. Gromeier,et al.  Poly(A)-binding protein modulates mRNA susceptibility to cap-dependent miRNA-mediated repression. , 2010, RNA.

[12]  David G Hendrickson,et al.  Concordant Regulation of Translation and mRNA Abundance for Hundreds of Targets of a Human microRNA , 2009, PLoS biology.

[13]  M. Hentze,et al.  Drosophila miR2 primarily targets the m7GpppN cap structure for translational repression. , 2009, Molecular cell.

[14]  J. Yates,et al.  Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation. , 2009, Molecular cell.

[15]  E. Izaurralde,et al.  The Silencing Domain of GW182 Interacts with PABPC1 To Promote Translational Repression and Degradation of MicroRNA Targets and Is Required for Target Release , 2009, Molecular and Cellular Biology.

[16]  David I. K. Martin,et al.  microRNA-Mediated Messenger RNA Deadenylation Contributes to Translational Repression in Mammalian Cells , 2009, PloS one.

[17]  E. Izaurralde,et al.  The GW182 protein family in animal cells: new insights into domains required for miRNA-mediated gene silencing. , 2009, RNA.

[18]  E. Izaurralde,et al.  A C-terminal silencing domain in GW182 is essential for miRNA function. , 2009, RNA.

[19]  S. Yokoyama,et al.  Mammalian GW182 contains multiple Argonaute-binding sites and functions in microRNA-mediated translational repression. , 2009, RNA.

[20]  O. Voinnet,et al.  Biochemical Evidence for Translational Repression by Arabidopsis MicroRNAs[W] , 2009, The Plant Cell Online.

[21]  E. Chan,et al.  The C-terminal half of human Ago2 binds to multiple GW-rich regions of GW182 and requires GW182 to mediate silencing. , 2009, RNA.

[22]  W. Filipowicz,et al.  Importance of the C-terminal domain of the human GW182 protein TNRC6C for translational repression. , 2009, RNA.

[23]  W. Filipowicz,et al.  Multiple independent domains of dGW182 function in miRNA-mediated repression in Drosophila. , 2009, RNA.

[24]  E. Izaurralde,et al.  The C-terminal domains of human TNRC6A, TNRC6B, and TNRC6C silence bound transcripts independently of Argonaute proteins. , 2009, RNA.

[25]  Y. Tomari,et al.  Drosophila argonaute1 and argonaute2 employ distinct mechanisms for translational repression. , 2009, Molecular cell.

[26]  Nicholas T. Ingolia,et al.  Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling , 2009, Science.

[27]  O. Voinnet Origin, Biogenesis, and Activity of Plant MicroRNAs , 2009, Cell.

[28]  E. Sontheimer,et al.  Origins and Mechanisms of miRNAs and siRNAs , 2009, Cell.

[29]  H. Grosshans,et al.  Repression of C. elegans microRNA targets at the initiation level of translation requires GW182 proteins , 2009, The EMBO journal.

[30]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[31]  Elisa Izaurralde,et al.  Deadenylation is a widespread effect of miRNA regulation. , 2008, RNA.

[32]  J. Doudna,et al.  A three-dimensional view of the molecular machinery of RNA interference , 2009, Nature.

[33]  J. J. Moser,et al.  Identification of GW182 and its novel isoform TNGW1 as translational repressors in Ago2-mediated silencing , 2008, Journal of Cell Science.

[34]  N. Rajewsky,et al.  Widespread changes in protein synthesis induced by microRNAs , 2008, Nature.

[35]  D. Bartel,et al.  The impact of microRNAs on protein output , 2008, Nature.

[36]  S. Luo,et al.  Global identification of microRNA–target RNA pairs by parallel analysis of RNA ends , 2008, Nature Biotechnology.

[37]  L. Sieburth,et al.  Widespread Translational Inhibition by Plant miRNAs and siRNAs , 2008, Science.

[38]  D. Bartel,et al.  Endogenous siRNA and miRNA Targets Identified by Sequencing of the Arabidopsis Degradome , 2008, Current Biology.

[39]  Diana V. Dugas,et al.  Sucrose induction of Arabidopsis miR398 represses two Cu/Zn superoxide dismutases , 2008, Plant Molecular Biology.

[40]  E. Izaurralde,et al.  GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay , 2008, Nature Structural &Molecular Biology.

[41]  W. Filipowicz,et al.  Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? , 2008, Nature Reviews Genetics.

[42]  Ligang Wu,et al.  Let me count the ways: mechanisms of gene regulation by miRNAs and siRNAs. , 2008, Molecular cell.

[43]  E. Izaurralde,et al.  Getting to the Root of miRNA-Mediated Gene Silencing , 2008, Cell.

[44]  J. Yates,et al.  Systematic identification of C. elegans miRISC proteins, miRNAs, and mRNA targets by their interactions with GW182 proteins AIN-1 and AIN-2. , 2007, Molecular cell.

[45]  Peer Bork,et al.  Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing. , 2007, Genes & development.

[46]  M. Hentze,et al.  A conserved motif in Argonaute-interacting proteins mediates functional interactions through the Argonaute PIWI domain , 2007, Nature Structural &Molecular Biology.

[47]  Takayuki Murata,et al.  MicroRNA Inhibition of Translation Initiation in Vitro by Targeting the Cap-Binding Complex eIF4F , 2007, Science.

[48]  Min Han,et al.  GW182 family proteins are crucial for microRNA-mediated gene silencing. , 2007, Trends in cell biology.

[49]  Shigeyuki Yokoyama,et al.  Let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system. , 2007, Genes & development.

[50]  Matthias W. Hentze,et al.  Drosophila miR2 induces pseudo-polysomes and inhibits translation initiation , 2007, Nature.

[51]  Heinz Saedler,et al.  The miRNA156/157 recognition element in the 3' UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. , 2007, The Plant journal : for cell and molecular biology.

[52]  J. Richter,et al.  Human let-7a miRNA blocks protein production on actively translating polyribosomes , 2006, Nature Structural &Molecular Biology.

[53]  Yang Yu,et al.  Evidence that microRNAs are associated with translating messenger RNAs in human cells , 2006, Nature Structural &Molecular Biology.

[54]  Alexander F. Schier,et al.  Differential Regulation of Germline mRNAs in Soma and Germ Cells by Zebrafish miR-430 , 2006, Current Biology.

[55]  Mihaela Zavolan,et al.  Effects of Dicer and Argonaute down-regulation on mRNA levels in human HEK293 cells , 2006, Nucleic acids research.

[56]  P. Bork,et al.  mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. , 2006, Genes & development.

[57]  T. Rana,et al.  Translation Repression in Human Cells by MicroRNA-Induced Gene Silencing Requires RCK/p54 , 2006, PLoS biology.

[58]  John G Doench,et al.  Recapitulation of short RNA-directed translational gene silencing in vitro. , 2006, Molecular cell.

[59]  S. Cohen,et al.  Genome-Wide Analysis of mRNAs Regulated by Drosha and Argonaute Proteins in Drosophila melanogaster , 2006, Molecular and Cellular Biology.

[60]  Anton J. Enright,et al.  Zebrafish MiR-430 Promotes Deadenylation and Clearance of Maternal mRNAs , 2006, Science.

[61]  Ligang Wu,et al.  MicroRNAs direct rapid deadenylation of mRNA. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Jerry Pelletier,et al.  Short RNAs repress translation after initiation in mammalian cells. , 2006, Molecular cell.

[63]  N. Sonenberg,et al.  Regulation of poly(A)-binding protein through PABP-interacting proteins. , 2006, Cold Spring Harbor symposia on quantitative biology.

[64]  C. Burge,et al.  The Widespread Impact of Mammalian MicroRNAs on mRNA Repression and Evolution , 2005, Science.

[65]  R. Russell,et al.  Animal MicroRNAs Confer Robustness to Gene Expression and Have a Significant Impact on 3′UTR Evolution , 2005, Cell.

[66]  T. Tuschl,et al.  Identification of Novel Argonaute-Associated Proteins , 2005, Current Biology.

[67]  N. Rajewsky,et al.  Silencing of microRNAs in vivo with ‘antagomirs’ , 2005, Nature.

[68]  David I. K. Martin,et al.  MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[69]  E. Chan,et al.  Disruption of GW bodies impairs mammalian RNA interference , 2005, Nature Cell Biology.

[70]  J. Yates,et al.  A role for the P-body component GW182 in microRNA function , 2005, Nature Cell Biology.

[71]  Isabelle Behm-Ansmant,et al.  A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. , 2005, RNA.

[72]  Ligang Wu,et al.  Micro-RNA Regulation of the Mammalian lin-28 Gene during Neuronal Differentiation of Embryonal Carcinoma Cells , 2005, Molecular and Cellular Biology.

[73]  W. Filipowicz,et al.  Inhibition of Translational Initiation by Let-7 MicroRNA in Human Cells , 2005, Science.

[74]  A. Pasquinelli,et al.  Regulation by let-7 and lin-4 miRNAs Results in Target mRNA Degradation , 2005, Cell.

[75]  Min Han,et al.  The developmental timing regulator AIN-1 interacts with miRISCs and may target the argonaute protein ALG-1 to cytoplasmic P bodies in C. elegans. , 2005, Molecular cell.

[76]  M. Schmid,et al.  Specific effects of microRNAs on the plant transcriptome. , 2005, Developmental cell.

[77]  J. Castle,et al.  Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs , 2005, Nature.

[78]  P. Green,et al.  AtXRN4 degrades mRNA in Arabidopsis and its substrates include selected miRNA targets. , 2004, Molecular cell.

[79]  D. Bartel,et al.  MicroRNA-Directed Cleavage of HOXB8 mRNA , 2004, Science.

[80]  Xuemei Chen,et al.  A MicroRNA as a Translational Repressor of APETALA2 in Arabidopsis Flower Development , 2004, Science.

[81]  Hajime Sakai,et al.  Regulation of Flowering Time and Floral Organ Identity by a MicroRNA and Its APETALA2-Like Target Genes Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.016238. , 2003, The Plant Cell Online.

[82]  B. Reinhart,et al.  A biochemical framework for RNA silencing in plants. , 2003, Genes & development.

[83]  C. Llave,et al.  Cleavage of Scarecrow-like mRNA Targets Directed by a Class of Arabidopsis miRNA , 2002, Science.

[84]  B. Reinhart,et al.  Prediction of Plant MicroRNA Targets , 2002, Cell.

[85]  E. Moss,et al.  Two genetic circuits repress the Caenorhabditis elegans heterochronic gene lin-28 after translation initiation. , 2002, Developmental biology.

[86]  V. Ambros,et al.  The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. , 1999, Developmental biology.

[87]  H. F. Rowell Sense of déjà vu , 1982, Nature.