On the application of lacunae-based methods to Maxwell's equations

A straightforward application of the previously designed lacunae-based numerical methods to unsteady electro-magnetic problems would encounter certain difficulties, as it may violate the continuity of the charges and currents, which is a necessary solvability condition for the Maxwell equations. In the paper, we prove existence of the special auxiliary charges and currents that satisfy the continuity equations identically. We also show that using such charges and currents as a part of the numerical procedure provides a clear and unobstructed venue toward implementation of the lacunae-based methods in electromagnetics.

[1]  Semyon Tsynkov,et al.  External Boundary Conditions for Three-Dimensional Problems of Computational Aerodynamics , 1999, SIAM J. Sci. Comput..

[2]  Semyon Tsynkov,et al.  Global discrete artificial boundary conditions for time-dependent wave propagation , 2001 .

[3]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[4]  J. Hadamard The Problem of Diffusion of Waves , 1942 .

[5]  P. Morse,et al.  Methods of theoretical physics , 1955 .

[6]  И.Г. Петровский On the diffusion of waves and the lacunas for hyperbolic equations , 1945 .

[7]  P. Günther Huygens' Principle and Hyperbolic Equations , 1988 .

[8]  A. Devaney,et al.  Nonuniqueness in inverse source and scattering problems , 1982 .

[9]  Semyon Tsynkov,et al.  Artificial boundary conditions for the numerical simulation of unsteady acoustic waves , 2003 .

[10]  T. Hagstrom Radiation boundary conditions for the numerical simulation of waves , 1999, Acta Numerica.

[11]  S. Tsynkov Numerical solution of problems on unbounded domains. a review , 1998 .

[12]  V. Ryaben'kii,et al.  Long-time numerical computation of wave-type solutions driven by moving sources ? ? This work was su , 2001 .

[13]  E. M. Lifshitz,et al.  Classical theory of fields , 1952 .

[14]  P. Günther Ein Beispiel einer nichttrivialen Huygensschen differentialgleichung mit vier unabhängigen Variablen , 1965 .

[15]  David E. Penney,et al.  Perspectives in mathematics , 1972 .

[16]  S. V,et al.  Global Discrete Artificial Boundary Conditions for Time-dependent Wave Propagation , 2022 .

[17]  Victor S. Ryaben'kii Nonreflecting time-dependent boundary conditions on artificial boundaries of varying location and shape , 2000 .

[18]  H. Moses The time‐dependent inverse source problem for the acoustic and electromagnetic equations in the one‐ and three‐dimensional cases , 1984 .

[19]  V. S. Vladimirov,et al.  Equations of mathematical physics , 1972 .

[20]  R. Schimming,et al.  A Survey on Huygens’ Principle , 1997 .

[21]  Myron Mathisson Le problème de M. Hadamard relatif à la diffusion des ondes , 1939 .

[22]  A. Devaney Nonuniqueness in the inverse scattering problem , 1978 .

[23]  Eine Klasse huyghenscher Differentialgleichungen und ihre Integration , 1955 .

[24]  J. Hadamard,et al.  Lectures on Cauchy's Problem in Linear Partial Differential Equations , 1924 .

[25]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[26]  D. Givoli Non-reflecting boundary conditions , 1991 .

[27]  Long-time numerical computation of wave-type solutions driven by moving sources ✩ , 2001 .

[28]  川口 光年,et al.  O. A. Ladyzhenskaya: The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Sci. Pub. New York-London, 1963, 184頁, 15×23cm, 3,400円. , 1964 .

[29]  R. Prosser,et al.  Initial conditions, sources, and currents for prescribed time-dependent acoustic and electromagnetic fields in three dimensions, Part I: The inverse initial value problem. Acoustic and electromagnetic "bullets," expanding waves, and imploding waves , 1986 .

[30]  S. Tsynkov Artificial Boundary Conditions for the Numerical Simulation of Unsteady Electromagnetic Waves , 2003 .

[31]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 1972 .

[32]  A. J. Devaney,et al.  Radiating and nonradiating classical current distributions and the fields they generate , 1973 .

[33]  M. Atiyah,et al.  Lacunas for hyperbolic differential operators with constant coefficients I , 1970 .

[34]  S.,et al.  Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media , 1966 .

[35]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .