A regression model with a hidden logistic process for feature extraction from time series
暂无分享,去创建一个
Allou Samé | Gérard Govaert | Patrice Aknin | Faicel Chamroukhi | G. Govaert | Faicel Chamroukhi | P. Aknin | A. Samé | G. Govaert
[1] Yulia Kempner,et al. Application of piece-wise regression to detecting internal structure of signal , 1992, Pattern Recognit..
[2] J. B. Ramsey,et al. Estimating Mixtures of Normal Distributions and Switching Regressions , 1978 .
[3] P. Green. Iteratively reweighted least squares for maximum likelihood estimation , 1984 .
[4] Ke Chen,et al. Improved learning algorithms for mixture of experts in multiclass classification , 1999, Neural Networks.
[5] Marco Muselli,et al. A New Learning Method for Piecewise Linear Regression , 2002, ICANN.
[6] Lawrence R. Rabiner,et al. A tutorial on Hidden Markov Models , 1986 .
[7] M. Fridman. Hidden Markov model regression , 1993 .
[8] Walter D. Fisher. On Grouping for Maximum Homogeneity , 1958 .
[9] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[10] Lawrence R. Rabiner,et al. A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.
[11] Lawrence Carin,et al. Sparse multinomial logistic regression: fast algorithms and generalization bounds , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[12] Steven R. Waterhouse,et al. Classification and Regression using Mixtures of Experts , 1997 .
[13] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[14] Robert A. Jacobs,et al. Hierarchical Mixtures of Experts and the EM Algorithm , 1993, Neural Computation.
[15] L. Baum,et al. A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains , 1970 .
[16] G. McLachlan,et al. The EM algorithm and extensions , 1996 .