Longest increasing subsequences in sliding windows

We consider the problem of finding the longest increasing subsequence in a sliding window over a given sequence (LISW). We propose an output-sensitive data structure that solves this problem in time O(n log log n+OUTPUT) for a sequence of n elements. This data structure substantially improves over the naive generalization of the longest increasing subsequence algorithm and in fact produces an output-sensitive optimal solution.

[1]  Carol Bult,et al.  PERMUTATIONS , 1994 .

[2]  Piotr Indyk,et al.  Maintaining stream statistics over sliding windows: (extended abstract) , 2002, SODA '02.

[3]  Sergey Bereg,et al.  Enumerating longest increasing subsequences and patience sorting , 2000, Inf. Process. Lett..

[4]  Piet Groeneboom Hydrodynamical methods for analyzing longest increasing subsequences , 2002 .

[5]  C. Schensted Longest Increasing and Decreasing Subsequences , 1961, Canadian Journal of Mathematics.

[6]  S. Salzberg,et al.  Alignment of whole genomes. , 1999, Nucleic acids research.

[7]  Bruce E. Sagan,et al.  Representations of the Symmetric Group , 2001 .

[8]  G. de B. Robinson,et al.  On the Representations of the Symmetric Group , 1938 .

[9]  B. Sagan The Symmetric Group , 2001 .

[10]  Donald E. Knuth,et al.  The art of computer programming: sorting and searching (volume 3) , 1973 .

[11]  Marc van Leeuwen,et al.  The Robinson-Schensted and Schützenberger algorithms, an elementary approach , 1995, Electron. J. Comb..

[12]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[13]  Peter van Emde Boas,et al.  Design and implementation of an efficient priority queue , 1976, Mathematical systems theory.

[14]  P. Diaconis,et al.  Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem , 1999 .

[15]  Srikanta Tirthapura,et al.  Distributed Streams Algorithms for Sliding Windows , 2004, Theory of Computing Systems.

[16]  J. van Leeuwen,et al.  Theoretical Computer Science , 2003, Lecture Notes in Computer Science.

[17]  Donald E. Knuth,et al.  PERMUTATIONS, MATRICES, AND GENERALIZED YOUNG TABLEAUX , 1970 .

[18]  Donald E. Knuth,et al.  The art of computer programming, volume 3: (2nd ed.) sorting and searching , 1998 .

[19]  Maw-Shang Chang,et al.  Efficient Algorithms for the Maximum Weight Clique and Maximum Weight Independent Set Problems on Permutation Graphs , 1992, Inf. Process. Lett..

[20]  Piotr Indyk,et al.  Maintaining Stream Statistics over Sliding Windows , 2002, SIAM J. Comput..

[21]  Thomas G. Szymanski,et al.  A fast algorithm for computing longest common subsequences , 1977, CACM.

[22]  Mikhail J. Atallah,et al.  New clique and independent set algorithms for circle graphs , 1992, Discret. Appl. Math..