Immunohistochemical localization of ryanodine binding proteins in the central nervous system of gymnotiform fish

The ryanodine receptor, an integral membrane protein of the sarcoplasmic reticulum in muscle, embodies a high conductance channel permeable to calcium ions. Recent studies have identified ryanodine‐binding proteins in avian and mammalian central nervous systems. These neuronal ryanodine receptors appear to function as Ca2− channels which may gate the release of Ca2+ from caffeine‐sensitive intracellular pools in neurons.

[1]  Walter Heiligenberg,et al.  Neural Nets in Electric Fish , 1991 .

[2]  L. Hood,et al.  Conserved organization of the human and murine T-cell receptor β-gene families , 1988, Nature.

[3]  S. Fleischer,et al.  Purified ryanodine receptor of skeletal muscle sarcoplasmic reticulum forms Ca2+-activated oligomeric Ca2+ channels in planar bilayers. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[4]  L. Maler,et al.  The posterior lateral line lobe of certain gymnotoid fish: Quantitative light microscopy , 1979, The Journal of comparative neurology.

[5]  J. Frank,et al.  Three-dimensional architecture of the calcium channel/foot structure of sarcoplasmic reticulum , 1989, Nature.

[6]  H. Takeshima,et al.  Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor , 1989, Nature.

[7]  C. Carr,et al.  Peripheral organization and central projections of the electrosensory nerves in gymnotiform fish , 1982, The Journal of comparative neurology.

[8]  R. Hawkes,et al.  Zebrin II: A polypeptide antigen expressed selectively by purkinje cells reveals compartments in rat and fish cerebellum , 1990, The Journal of comparative neurology.

[9]  J. Nagy,et al.  [3H]Ryanodine binding sites in rat brain demonstrated by membrane binding and autoradiography , 1991, Brain Research.

[10]  K. Campbell,et al.  The effects of ryanodine on passive calcium fluxes across sarcoplasmic reticulum membranes. , 1987, The Journal of biological chemistry.

[11]  H. Vanegas,et al.  Morphological Aspects of the Teleostean Optic Tectum , 1984 .

[12]  Harold P. Erickson,et al.  Purification and reconstitution of the calcium release channel from skeletal muscle , 1988, Nature.

[13]  L. Maler,et al.  Anatomical organization of the hypophysiotrophic systems in the electric fish, Apteronotus leptorhynchus , 1992, The Journal of comparative neurology.

[14]  T. Blackstad,et al.  Pyramidal neurones of the dorsal cochlear nucleus: A golgi and computer reconstruction study in cat , 1984, Neuroscience.

[15]  R. Hawkes Antigenic markers of cerebellar modules in the adult mouse. , 1992, Biochemical Society transactions.

[16]  J. Nakai,et al.  Primary structure and functional expression from cDN A of the cardiac ryanodine receptor/calcium release channel , 1990, FEBS letters.

[17]  W. Catterall Excitation-contraction coupling in vertebrate skeletal muscle: A tale of two calcium channels , 1991, Cell.

[18]  T. Deerinck,et al.  Identification and localization of ryanodine binding proteins in the avian central nervous system , 1990, Neuron.

[19]  K. Campbell,et al.  Solubilization and biochemical characterization of the high affinity [3H]ryanodine receptor from rabbit brain membranes. , 1990, The Journal of biological chemistry.

[20]  L. Maler,et al.  An atlas of the brain of the electric fish Apteronotus leptorhynchus , 1991, Journal of Chemical Neuroanatomy.

[21]  L. Maler,et al.  The optic tectum of gymnotiform teleosts Eigenmannia virescens and Apteronotus leptorhynchus: A golgi study , 1986, Neuroscience.

[22]  R. Hawkes,et al.  The modular cerebellum , 1991, Progress in Neurobiology.

[23]  M. Phillips,et al.  Molecular cloning of cDNA encoding human and rabbit forms of the Ca2+ release channel (ryanodine receptor) of skeletal muscle sarcoplasmic reticulum. , 1990, The Journal of biological chemistry.

[24]  R. Hawkes,et al.  Zebrin II distinguishes the ampullary organ receptive map from the tuberous organ receptive maps during development in the teleost electrosensory lateral line lobe , 1992, Brain Research.

[25]  J. Casida,et al.  Calcium-ryanodine receptor complex. Solubilization and partial characterization from skeletal muscle junctional sarcoplasmic reticulum vesicles. , 1986, The Journal of biological chemistry.

[26]  A. Bass Evolution of the vestibulolateral lobe of the cerebellum in electroreceptive and nonelectroreceptive teleosts , 1982, Journal of morphology.

[27]  H. Karten,et al.  Differential projections of ordinary lateral line receptors and electroreceptors in the gymnotid fish, Apteronotus (Sternarchus) albifrons , 1974, The Journal of comparative neurology.

[28]  G. Meissner,et al.  Ryanodine activation and inhibition of the Ca2+ release channel of sarcoplasmic reticulum. , 1986, The Journal of biological chemistry.

[29]  Mark Ellisman,et al.  Spontaneous discharge of afferents in a neuroma reflects original receptor tuning , 1990, Brain Research.

[30]  J. Jansen,et al.  The comparative anatomy and histology of the cerebellum from myxinoids through birds , 1967 .

[31]  T. Reese,et al.  Similarity of junctions between plasma membranes and endoplasmic reticulum in muscle and neurons , 1976, The Journal of cell biology.

[32]  K. Campbell,et al.  Purified ryanodine receptor from rabbit skeletal muscle is the calcium- release channel of sarcoplasmic reticulum , 1988, The Journal of general physiology.

[33]  J. Meldolesi,et al.  Spontaneous [Ca2+]i fluctuations in rat chromaffin cells do not require inositol 1,4,5-trisphosphate elevations but are generated by a caffeine- and ryanodine-sensitive intracellular Ca2+ store. , 1990, The Journal of biological chemistry.

[34]  S. Fleischer,et al.  Localization of Ca2+ release channels with ryanodine in junctional terminal cisternae of sarcoplasmic reticulum of fast skeletal muscle. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[35]  T. Deerinck,et al.  Identification and localization of two triad junctional foot protein isoforms in mature avian fast twitch skeletal muscle. , 1990, The Journal of biological chemistry.

[36]  Clara Franzini-Armstrong,et al.  The brain ryanodine receptor: A caffeine-sensitive calcium release channel , 1991, Neuron.

[37]  R. Tsien,et al.  Imaging of cytosolic Ca2+ transients arising from Ca2+ stores and Ca2+ channels in sympathetic neurons , 1988, Neuron.

[38]  Enrico Mugnaini,et al.  Distribution and light microscopic features of granule cells in the cochlear nuclei of cat, rat, and mouse , 1980, The Journal of comparative neurology.

[39]  R. Miller,et al.  The role of caffeine-sensitive calcium stores in the regulation of the intracellular free calcium concentration in rat sympathetic neurons in vitro. , 1988, Molecular pharmacology.

[40]  K. Campbell,et al.  Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle , 1988, The Journal of cell biology.

[41]  L. Maler,et al.  The cytology of the posterior lateral line lobe of high‐frequency weakly electric fish (gymnotidae): Dendritic differentiation and synaptic specificity in a simple cortex , 1981, The Journal of comparative neurology.

[42]  L. Maler,et al.  The distribution of serotonin in the brain of Apteronotus leptorhynchus: an immunohistochemical study. , 1990, Journal of chemical neuroanatomy.

[43]  L. Maler,et al.  Catecholaminergic systems in the brain of a gymnotiform teleost fish: An immunohistochemical study , 1990, The Journal of comparative neurology.

[44]  Pankaj Sah,et al.  Ca2+-activated K+ currents underlying the afterhyperpolarization in guinea pig vagal neurons: A role for Ca2+-activated Ca2+ release , 1991, Neuron.

[45]  L. Maler,et al.  Substance P-like immunoreactivity in the brain of the gymnotiform fish Apteronotus leptorhynchus: Presence of sex differences , 1992, Journal of Chemical Neuroanatomy.

[46]  H. Erickson,et al.  Evidence for a junctional feet-ryanodine receptor complex from sarcoplasmic reticulum. , 1987, Biochemical and biophysical research communications.

[47]  M H Ellisman,et al.  Ryanodine and inositol trisphosphate receptors coexist in avian cerebellar Purkinje neurons , 1991, The Journal of cell biology.

[48]  T. Deerinck,et al.  Nonmammalian vertebrate skeletal muscles express two triad junctional foot protein isoforms. , 1991, Biophysical journal.

[49]  E. Mugnaini,et al.  The neuropeptide cerebellin is a marker for two similar neuronal circuits in rat brain. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[50]  D. Monaghan,et al.  The distribution of excitatory amino acid binding sites in the brain of an electric fish, Apteronotus leptorhynchus , 1991, Journal of Chemical Neuroanatomy.

[51]  C A Shumway,et al.  Multiple electrosensory maps in the medulla of weakly electric gymnotiform fish. II. Anatomical differences , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[52]  L. Maler,et al.  Localization of vitamin D-dependent calcium binding protein in the electrosensory and electromotor system of high frequency gymnotid fish , 1984, Brain Research.