The emergence of first-order logic

To most mathematical logicians working in the 1980s, first-order logic is the proper and natural framework for mathematics. Yet it was not always so. In 1923, when a young Norwegian mathematician named Thoralf Skolem argued that set theory should be based on first-order logic, it was a radical and unprecedented proposal. The radical nature of what Skolem proposed resulted, above all, from its effect on the notion of categoricity. During the 1870s, as part of what became known as the arithmetization of analysis, Cantor and Dedekind characterized the set n of real numbers (up to isomorphism) and thereby found a categorical axiomatization for n. Likewise, during the 1880s Dedekind and Peano categorically axiomatized the set M of natural numbers by means of the Peano Postulates. Yet in 1923, when Skolem insisted that set theory be treated within first-order logic, he knew (by the recently discovered Lowenheim-Skolem Theorem) that in first-order logic neither set theory nor the real numbers could be given a categorical axiomatization, since each would have both a countable model and an uncountable model. A decade later, Skolem (1933, 1934) also succeeded in proving, by the construction of a countable nonstandard model, that the Peano Postulates do not uniquely characterize the natural numbers within first-order logic. The Upward Lowenheim-Skolem Theorem of Tarski, the first version of which was published as an appendix to (Skolem 1934), made it clear that no axiom system having an infinite model is categorical in first-order logic. The aim of the present article is to describe how first-order logic gradually emerged from the rest of logic and then became accepted by mathematical logicians as the proper basis for mathematics—despite the opposition of Zermelo and others. Consequently, I have pointed out where

[1]  L. M. Milne-Thomson,et al.  Grundlagen der Mathematik , 1935, Nature.

[2]  Gregory H. Moore Beyond first-order logic: the historical interplay between mathematical logic and axiomatic set theory , 1980 .

[3]  E. Zermelo Über den Begriff der Definitheit in der Axiomatik , .

[4]  Leopold Löwenheim: Life, Work, and Early Influence , 1977 .

[5]  G. B. M. Principia Mathematica , 1911, Nature.

[6]  E. V. Huntington,et al.  A complete set of postulates for the theory of absolute continuous magnitude , 1902 .

[7]  George Boole,et al.  The mathematical analysis of logic , 1948 .

[8]  B. Russell The Principles of Mathematics , 1938 .

[9]  F. Ramsey The foundations of mathematics , 1932 .

[10]  M. Schönfinkel Über die Bausteine der mathematischen Logik , 1924 .

[11]  J. Neumann Eine Axiomatisierung der Mengenlehre. , 1925 .

[12]  Wilhelm Ackermann,et al.  Begründung des „tertium non datur” mittels der Hilbertschen Theorie der Widerspruchsfreiheit , 1925 .

[13]  W. Ackermann,et al.  Grundzüge der theoretischen Logik , 1928 .

[14]  R. Montague,et al.  Natural models of set theories , 1959 .

[15]  Oswald Veblen,et al.  A system of axioms for geometry , 1904 .

[16]  C. Lewis,et al.  A Survey Of Symbolic Logic , 1920 .

[17]  H. G. Forder The foundations of Euclidean geometry , 1927 .

[18]  Leopold Löwenheim,et al.  Über die Auflösung von Gleichungen im logischen Gebietekalkul , 1910 .

[19]  Alonzo Church Schröder's anticipation of the simple theory of types , 1939 .

[20]  C. S. Peirce Five Hundred and Eightieth Meeting. March 12, 1867. Adjourned Statute Meeting; On an Improvement in Boole's Calculus of Logic , 1865 .

[21]  Augustus de Morgan,et al.  On the Syllogism, No. IV., and on the Logic of Relations , 1864 .

[22]  G. Boolos On second-order logic , 1975 .

[23]  A. Fraenkel,et al.  Zu den Grundlagen der Cantor-Zermeloschen Mengenlehre , 1922 .

[24]  David Hilbert,et al.  Grundlagen der Geometrie , 2022 .

[25]  John Corcoran,et al.  Conceptual Notation and Related Articles , 1972 .

[26]  Gottlob Frege,et al.  Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens , 1879 .

[27]  P. Bernays,et al.  Zum Entscheidungsproblem der mathematischen Logik , 1928 .

[28]  R. Carnap,et al.  Ein Gültigkeitskriterium für die Sätze der klassischen Mathematik , 1935 .

[29]  H. Poincaré,et al.  Les Mathematiques et la Logique. , 1906 .

[30]  J. Heijenoort From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931 , 1967 .

[31]  J. Sommer Hilbert's Foundations of Geometry , 1900 .

[32]  A. Mostowski On a generalization of quantifiers , 1957 .

[33]  Gottlob Frege,et al.  Über die Grundlagen der Geometrie. , 2022 .

[34]  E. Schröder Der Operationskreis des Logikkalkuls , .

[35]  W. Ackermann,et al.  Grundzuge der Theoretischen Logik , 1928 .

[36]  Barkley Rosser Review: A. Malcev, Untersuchungen aus dem Gebiete der Mathematischen Logik , 1937 .