Methane Emission Reduction: An Application of FUND

Methane is, after carbon dioxide, the most important anthropogenic greenhouse gas. Governments plan to abate methane emissions. A crude set of estimates of reduction costs is included in FUND, an integratedassessment model of climate change. In a cost-benefit analysis, methane emission reduction is found to be instrumental in controlling the optimal rate of climate change. In a cost-effectiveness analysis, methane emission reduction largely replaces carbon dioxide emission reduction. Methane emission reduction reinforces the case for international cooperation in climate policy, but complicates the efficient allocation of emission reduction efforts. Methane emission reduction at the short run does not help to achieve the ultimate objective of the Framework Convention on Climate Change.

[1]  Richard S. J. Tol,et al.  Short-term decisions under long-term uncertainty , 1998 .

[2]  J. Houghton,et al.  Climate change 1992 : the supplementary report to the IPCC scientific assessment , 1992 .

[3]  R. Moss,et al.  Climate change 1995 - impacts, adaptations and mitigation of climate change : scientific-technical analyses , 1997 .

[4]  Richard Schmalensee,et al.  Comparing Greenhouse Gases for Policy Purposes , 1993 .

[5]  J. Edmonds,et al.  A review of mitigation cost studies , 1996 .

[6]  Atul K. Jain,et al.  Contribution of CH4 to Multi-Gas Emission Reduction Targets , 2000 .

[7]  Richard S. J. Tol,et al.  New Estimates of the Damage Costs of Climate Change , 1998 .

[8]  Unfccc Kyoto Protocol to the United Nations Framework Convention on Climate Change , 1997 .

[9]  Anastasia Telesetsky,et al.  The Kyoto Protocol , 1999 .

[10]  R. Tol Estimates of the Damage Costs of Climate Change, Part II. Dynamic Estimates , 2002 .

[11]  R. Tol Equitable cost-benefit analysis of climate change policies , 2000 .

[12]  Richard S. J. Tol,et al.  Welfare specifications and optimal control of climate change: an application of fund , 2002 .

[13]  Klein Goldewijk Cgm,et al.  The IMAGE 2 Hundred Year (1890 - 1990) Data Base of the Global Environment (HYDE) , 1995 .

[14]  Richard S. J. Tol,et al.  Safe policies in an uncertain climate: an application of FUND , 1999 .

[15]  D. Jager,et al.  Effectiveness of non-CO2 greenhouse gas emission reduction technologies , 1994, Environmental monitoring and assessment.

[16]  Milind Kandlikar,et al.  Indices for comparing greenhouse gas emissions: integrating science and economics , 1996 .

[17]  Leo Schrattenholzer,et al.  Estimating the costs of mitigating greenhouse gases , 1996 .

[18]  K. Shine Radiative Forcing of Climate Change , 2000 .

[19]  Milind Kandlikar,et al.  The relative role of trace gas emissions in greenhouse abatement policies , 1995 .

[20]  Tom M. L. Wigley,et al.  Global Warming Potentials: 2. Accuracy , 2000 .

[21]  K. Shine Radiative Forcing of Climate Change , 2000 .

[22]  R. Tol The damage costs of climate change toward more comprehensive calculations , 1995 .

[23]  Atul K. Jain,et al.  A welfare-based index for assessing environmental effects of greenhouse-gas emissions , 1996, Nature.

[24]  A. Manne,et al.  On stabilizing CO2 concentrations – cost‐effective emission reduction strategies , 1997 .

[25]  K. Hasselmann,et al.  Transport and storage of CO2 in the ocean ——an inorganic ocean-circulation carbon cycle model , 1987 .

[26]  Atul K. Jain,et al.  Costs of Multigreenhouse Gas Reduction Targets for the USA , 1999, Science.

[27]  M. Schlesinger,et al.  A sequential-decision strategy for abating climate change , 1992, Nature.

[28]  R. Tol Spatial and Temporal Efficiency in Climate Policy: Applications of FUND , 1999 .

[29]  T. Wigley The Kyoto Protocol: CO2 CH4 and climate implications , 1998 .

[30]  J. Bongaarts,et al.  Climate Change: The IPCC Scientific Assessment. , 1992 .

[31]  R. Tol,et al.  The Optimal Timing of Greenhouse Gas Emission Abatement, Individual Rationality and Intergenerational Equity , 1998 .

[32]  Paul J. Crutzen,et al.  Changing concentration, lifetime and climate forcing of atmospheric methane , 1998 .

[33]  Steven J. Smith,et al.  Global Warming Potentials: 1. Climatic Implications of Emissions Reductions , 2000 .

[34]  R. Tol,et al.  Climate Coalitions in an Integrated Assessment Model , 2001 .

[35]  Sebastian Oberthür,et al.  The Kyoto Protocol , 1999 .

[36]  J. Melillo,et al.  Multi-gas assessment of the Kyoto Protocol , 1999, Nature.

[37]  Richard S. J. Tol,et al.  On the optimal control of carbon dioxide emissions: an application of FUND , 1997 .

[38]  P. Michaelis Global warming: Efficient policies in the case of multiple pollutants , 1992 .

[39]  Emissions inventories and options for control , 1995 .

[40]  R. Tol On the difference in impact of two almost identical climate change scenarios , 1998 .

[41]  Mark Rounsevell,et al.  Climate Change 1995: impacts, adaptations and mitigation of climate change: scientific-technical analyses. Contribution of Working Group II to the Second Assessment Report of the Intergovernmental Panel on Climate Change , 1996 .

[42]  James G. Titus,et al.  The risk of sea level rise , 1996 .

[43]  John M. Reilly,et al.  Climate change damage and the trace gas index issue , 1993 .

[44]  J. Jensen,et al.  What are the Gains from a Multi-Gas Strategy? , 2001 .

[45]  Alan S. Manne,et al.  An alternative approach to establishing trade-offs among greenhouse gases , 2001, Nature.

[46]  Stephen H. Schneider,et al.  Achieving low-cost emissions targets , 1997, Nature.

[47]  R. Tol Kyoto, Efficiency, and Cost-Effectiveness: Applications of FUND , 1999 .

[48]  T. O'riordan,et al.  Climate Change 1995: Economic and Social Dimensions , 1997 .

[49]  Adam Rose,et al.  The efficiency and equity of marketable permits for CO2 emissions , 1993 .

[50]  R. Tol The damage costs of climate change towards a dynamic representation , 1996 .

[51]  Non-CO2 Greenhouse Gases: Why and How to Control? , 1994 .

[52]  R. Tol Equitable Cost-Benefit Analysis of Climate Change , 1999 .

[53]  Donald J. Wuebbles,et al.  Radiative forcing of climate , 1991 .

[54]  J. Houghton Climate change 1994 : radiative forcing of climate change and an evaluation of the IPCC IS92 emission scenarios , 1995 .

[55]  R. Tol Time Discounting and Optimal Emission Reduction: An Application of FUND , 1999 .

[56]  J. Edmonds,et al.  Economic and environmental choices in the stabilization of atmospheric CO2 concentrations , 1996, Nature.

[57]  Richard S. J. Tol,et al.  The Marginal Costs of Greenhouse Gas Emissions , 1999 .

[58]  Roberto Schaeffer,et al.  Global warming potentials: The case of emissions from dams , 1995 .

[59]  L. Meyer,et al.  Non-CO2 Greenhouse Gases: Scientific Understanding, Control and Implementation , 2000 .

[60]  Richard S. J. Tol,et al.  Equity, international trade and climate policy , 2002 .

[61]  J. van Ham,et al.  Non-CO[2] greenhouse gases, why and how to control? : proceedings of an international symposium, Maastricht, the Netherlands, 13-15 December 1993 , 1994 .

[62]  D. Jager,et al.  Cost-effectiveness of emission-reducing measures for methane in the Netherlands , 1996 .

[63]  Alan S. Manne,et al.  On stabilizing CO 2 concentrations — cost-effective emission reduction strategies , 1997 .

[64]  Henry D. Jacoby,et al.  Integrated Global System Model for Climate Policy Assessment: Feedbacks and Sensitivity Studies , 1999 .