Complex metal hydrides for hydrogen, thermal and electrochemical energy storage

Hydrogen has a very diverse chemistry and reacts with most other elements to form compounds, which have fascinating structures, compositions and properties. Complex metal hydrides are a rapidly expanding class of materials, approaching multi-functionality, in particular within the energy storage field. This review illustrates that complex metal hydrides may store hydrogen in the solid state, act as novel battery materials, both as electrolytes and electrode materials, or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore, it is highlighted how complex metal hydrides may act in an integrated setup with a fuel cell. This review focuses on the unique properties of light element complex metal hydrides mainly based on boron, nitrogen and aluminum, e.g., metal borohydrides and metal alanates. Our hope is that this review can provide new inspiration to solve the great challenge of our time: efficient conversion and large-scale storage of renewable energy.

[1]  C. Milanese,et al.  In Situ X-ray Diffraction Studies on the De/rehydrogenation Processes of the K2[Zn(NH2)4]-8LiH System , 2017 .

[2]  D. Sheppard,et al.  Reversibility of LiBH4 Facilitated by the LiBH4–Ca(BH4)2 Eutectic , 2017 .

[3]  M. Paskevicius,et al.  Metal hydrides for concentrating solar thermal power energy storage , 2016 .

[4]  R. Juza,et al.  Metallamide und Metallnitride, 24. Mitteilung. Die Kristallstruktur des Lithiumamides , 1951 .

[5]  Young-Su Lee,et al.  On the Formation and the Structure of the First Bimetallic Borohydride Borate, LiCa3(BH4)(BO3)(2) , 2011 .

[6]  Hai-Wen Li,et al.  Direct Dry Syntheses and Thermal Analyses of a Series of Aluminum Complex Hydrides , 2009 .

[7]  Line H. Rude,et al.  Hydrogen-fluorine exchange in NaBH4-NaBF4. , 2013, Physical chemistry chemical physics : PCCP.

[8]  折茂 慎一 Lithium superionic conduction in lithium borohydride accompanied by structural transition , 2007 .

[9]  Peter Lund,et al.  Feasibility study of a metal hydride hydrogen store for a self-sufficient solar hydrogen energy system , 1996 .

[10]  Ammine Calcium and Strontium Borohydrides: Syntheses, Structures, and Properties. , 2015, ChemSusChem.

[11]  Lars H. Jepsen,et al.  Phase Diagram for the NaBH4–KBH4 System and the Stability of a Na1–xKxBH4 Solid Solution , 2015 .

[12]  P. Reale,et al.  Origin of the Voltage Hysteresis of MgH2 Electrodes in Lithium Batteries , 2015 .

[13]  M. Paskevicius,et al.  Multifunctionality of silver closo-boranes , 2017, Nature Communications.

[14]  C. Frommen,et al.  Structure and thermal properties of composites with RE-borohydrides (RE = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Er, Yb or Lu) and LiBH4 , 2014 .

[15]  S. Jayanti,et al.  Thermal Coupling Studies of a High Temperature Proton Exchange Membrane Fuel Cell Stack and a Metal Hydride Hydrogen Storage System , 2012 .

[16]  Young-Su Lee,et al.  Structural and magnetocaloric properties of novel gadolinium borohydrides , 2016 .

[17]  Weifang Luo,et al.  (LiNH2-MgH2): a viable hydrogen storage system , 2004 .

[18]  F. Besenbacher,et al.  Mixed‐Anion and Mixed‐Cation Borohydride KZn(BH4)Cl2: Synthesis, Structure and Thermal Decomposition , 2010 .

[19]  E. Pinatel,et al.  A thermodynamic assessment of LiBH 4 , 2022 .

[20]  Jason Graetz,et al.  Decomposition kinetics of the AlH3 polymorphs. , 2005, The journal of physical chemistry. B.

[21]  S. Orimo,et al.  Reversible hydriding and dehydriding reactions of perovskite-type hydride NaMgH3 , 2005 .

[22]  L. Farina,et al.  Lithium Alanates as Negative Electrodes in Lithium‐Ion Batteries , 2015 .

[23]  Q. Gu,et al.  Structure and decomposition of zinc borohydride ammonia adduct: towards a pure hydrogen release , 2012 .

[24]  Craig M. Jensen,et al.  Development of catalytically enhanced sodium aluminum hydride as a hydrogen-storage material , 2001 .

[25]  S. Orimo,et al.  Synthesis and dehydriding studies of Mg–N–H systems , 2004 .

[26]  Lars H. Jepsen,et al.  Synthesis, Crystal Structure, Thermal Decomposition, and 11B MAS NMR Characterization of Mg(BH4)2(NH3BH3)2 , 2014 .

[27]  P. Marty,et al.  MgH2 intermediate scale tank tests under various experimental conditions , 2011 .

[28]  Robert C. Bowman,et al.  Altering Hydrogen Storage Properties by Hydride Destabilization through Alloy Formation: LiH and MgH2 Destabilized with Si , 2004 .

[29]  Young-Su Lee,et al.  Trends in Syntheses, Structures, and Properties for Three Series of Ammine Rare-Earth Metal Borohydrides, M(BH4)3·nNH3 (M = Y, Gd, and Dy). , 2015, Inorganic chemistry.

[30]  Lars H. Jepsen,et al.  Thermal decomposition of sodium amide, NaNH2, and sodium amide hydroxide composites, NaNH2-NaOH. , 2016, Physical chemistry chemical physics : PCCP.

[31]  Xiangfeng Liu,et al.  First-Principles Study of Novel Conversion Reactions for High-Capacity Li-Ion Battery Anodes in the Li-Mg-B-N-H System , 2011 .

[32]  D. Sheppard,et al.  Sodium-based hydrides for thermal energy applications , 2016, Applied Physics A.

[33]  R. Černý,et al.  Lightest borohydride probed by synchrotron X-ray diffraction: Experiment calls for a new theoretical revision , 2008 .

[34]  Q. Gu,et al.  Synthesis, structures and hydrogen storage properties of two new H-enriched compounds: Mg(BH4)2(NH3BH3)2 and Mg(BH4)2·(NH3)2(NH3BH3). , 2013, Dalton transactions.

[35]  Nanoscopic Al1-xCex phases in the NaH + Al + 0.02CeCl3 system , 2011 .

[36]  J. H. Rector,et al.  Yttrium and lanthanum hydride films with switchable optical properties , 1996, Nature.

[37]  S. Orimo,et al.  Nanostructure-induced hydrogenation of layered compound MgB2 , 2010 .

[38]  W. David,et al.  Novel alkali earth borohydride Sr(BH4)2 and borohydride-chloride Sr(BH4)Cl. , 2013, Inorganic chemistry.

[39]  J. Bonnet,et al.  Bottom-up preparation of MgH₂ nanoparticles with enhanced cycle life stability during electrochemical conversion in Li-ion batteries. , 2014, Nanoscale.

[40]  R. Černý,et al.  Synthesis, Structure, and Li-Ion Conductivity of LiLa(BH4)3X, X = Cl, Br, I , 2017 .

[41]  H. Hagemann,et al.  Insight into Mg(BH4)2 with synchrotron X-ray diffraction: Structure revision, crystal chemistry, and anomalous thermal expansion , 2009 .

[42]  P. Lehman,et al.  Design of a photovoltaic-hydrogen-fuel cell energy system , 1991 .

[43]  Line H. Rude,et al.  Iodide substitution in lithium borohydride, LiBH4–LiI , 2011 .

[44]  A. Züttel,et al.  Correlation between thermodynamical stabilities of metal borohydrides and cation electronegativites: First-principles calculations and experiments , 2006 .

[45]  Ping Chen,et al.  Development of amidoboranes for hydrogen storage. , 2011, Chemical communications.

[46]  H. Maleki,et al.  Effects of overdischarge on performance and thermal stability of a Li-ion cell , 2006 .

[47]  W. David,et al.  The structure, thermal properties and phase transformations of the cubic polymorph of magnesium tetrahydroborate. , 2012, Physical chemistry chemical physics : PCCP.

[48]  A. Deydier,et al.  A review on high temperature thermochemical heat energy storage , 2014 .

[49]  M. Paskevicius,et al.  Research on metal hydrides revived for next-generation solutions to renewable energy storage , 2013 .

[50]  Craig M. Jensen,et al.  Hydrogen cycling behavior of zirconium and titanium–zirconium-doped sodium aluminum hydride , 1999 .

[51]  A. Remhof,et al.  Stability and reversibility of LiBH4. , 2008, The journal of physical chemistry. B.

[52]  D. Parra,et al.  Design, testing and evaluation of a community hydrogen storage system for end user applications , 2016 .

[53]  Theodore Motyka,et al.  SCREENING ANALYSIS OF METAL HYDRIDE BASED THERMAL ENERGY STORAGE SYSTEMS FOR CONCENTRATING SOLAR POWER PLANTS , 2014 .

[54]  A. Remhof,et al.  Stability and Decomposition of NaBH4 , 2010 .

[55]  Robert C. Bowman,et al.  Gas-based hydride applications: recent progress and future needs , 2003 .

[56]  O. Løvvik,et al.  Experimental studies of α-AlD3 and α′-AlD3versus first-principles modelling of the alane isomorphs , 2008 .

[57]  H. Hagemann,et al.  Bimetallic Borohydrides in the System M(BH4)2–KBH4 (M = Mg, Mn): On the Structural Diversity , 2012 .

[58]  H. Schlesinger,et al.  Lithium Aluminum Hydride, Aluminum Hydride and Lithium Gallium Hydride, and Some of their Applications in Organic and Inorganic Chemistry1 , 1947 .

[59]  F. Schüth,et al.  Synthesis, crystal structures, and hydrogen-storage properties of Eu(AlH4)2 and Sr(AlH4)2 and of their decomposition intermediates, EuAlH5 and SrAlH5. , 2012, Inorganic chemistry.

[60]  Henrietta W. Langmi,et al.  Facile cycling of Ti-doped LiAlH4 for high performance hydrogen storage. , 2009, Journal of the American Chemical Society.

[61]  Hai-Wen Li,et al.  A Li-Mg-N-H composite as H2 storage material: a case study with Mg(NH2)2-4LiH-LiNH2. , 2015, Chemical communications.

[62]  Thermal management of fuel cell-driven vehicles using HT-PEM and hydrogen storage , 2014, 2014 Ninth International Conference on Ecological Vehicles and Renewable Energies (EVER).

[63]  A. Yamada,et al.  Reversible hydrogen decomposition of KAlH4 , 2003 .

[64]  H. Hagemann,et al.  Halide Free M(BH4)2 (M = Sr, Ba, and Eu) Synthesis, Structure, and Decomposition. , 2016, Inorganic chemistry.

[65]  T. Jensen,et al.  Barium borohydride chlorides: synthesis, crystal structures and thermal properties. , 2016, Dalton transactions.

[66]  H. Clasen Alanat‐Synthese aus den Elementen und ihre Bedeutung , 1961 .

[67]  L. Shaw,et al.  Effects of mechanical activation on dehydrogenation of the lithium amide and lithium hydride system , 2008 .

[68]  Andreas Züttel,et al.  Hydrogen storage properties of LiBH4 , 2003 .

[69]  Hui Wu,et al.  Exceptional Superionic Conductivity in Disordered Sodium Decahydro‐closo‐decaborate , 2014, Advanced materials.

[70]  P. Marty,et al.  Coupling and thermal integration of a solid oxide fuel cell with a magnesium hydride tank , 2013 .

[71]  J. Bonnet,et al.  Metal hydrides: an innovative and challenging conversion reaction anode for lithium-ion batteries , 2015, Beilstein journal of nanotechnology.

[72]  M. Powell,et al.  Metal Hydrides for High-Temperature Power Generation , 2015 .

[73]  R. Hu,et al.  Electrochemical performances of MgH 2 and MgH 2 -C films for lithium ion battery anode , 2017 .

[74]  Young-Su Lee,et al.  Lithium Ion Disorder and Conduction Mechanism in LiCe(BH4)3Cl , 2016 .

[75]  S. Orimo,et al.  Destabilization of Li-based complex hydrides , 2004 .

[76]  R. Černý,et al.  Fast ion conduction in garnet-type metal borohydrides Li 3 K 3 Ce 2 (BH 4 ) 12 and Li 3 K 3 La 2 (BH 4 ) 12 , 2016 .

[77]  Tetsuo Sakai,et al.  Reversible Hydrogen Storage via Titanium-Catalyzed LiAlH4 and Li3AlH6 , 2001 .

[78]  S. Orimo,et al.  Lithium Fast‐Ionic Conduction in Complex Hydrides: Review and Prospects , 2011 .

[79]  M. Groll,et al.  Metal hydride devices for environmentally clean energy technology , 1994 .

[80]  R. Černý,et al.  Borohydrides: from sheet to framework topologies. , 2014, Dalton transactions.

[81]  H. Fujii,et al.  Lithium nitride for reversible hydrogen storage , 2004 .

[82]  R. Černý,et al.  Lithium boro-hydride LiBH4 , 2002 .

[83]  E. Akiba,et al.  Metal boranes: Progress and applications , 2016 .

[84]  G. Ceder,et al.  First principles investigations of complex hydrides AMH4 and A3MH6 (A = Li, Na, K, M = B, Al, Ga) as hydrogen storage systems , 2004 .

[85]  M. Kenisarin High-temperature phase change materials for thermal energy storage , 2010 .

[86]  O. B. Jensen,et al.  Thermal coupling of a high temperature PEM fuel cell with a complex hydride tank , 2009 .

[87]  Arild Vik,et al.  Recent Developments of Regenerative Fuel Cell Systems for Satellites , 2014 .

[88]  Zi-kui Liu,et al.  Computational thermodynamic modeling of the Mg-B system , 2001 .

[89]  B. Bulychev,et al.  The P,T-State Diagram and Solid Phase Synthesis of Aluminum Hydride , 1995 .

[90]  J. W. Turley,et al.  Crystal structure of aluminum hydride , 1969 .

[91]  J. Graetz,et al.  Synthesis and Crystal Structure of -AlD3. , 2007 .

[92]  Y. F. Khalil,et al.  Experimental and theoretical investigations for mitigating NaAlH4 reactivity risks during postulated accident scenarios involving exposure to air or water , 2013 .

[93]  H. Hagemann,et al.  A mixed-cation mixed-anion borohydride NaY(BH4)2Cl2 , 2012 .

[94]  T. Fujita,et al.  Formation of an intermediate compound with a B12H12 cluster: experimental and theoretical studies on magnesium borohydride Mg(BH4)2 , 2009, Nanotechnology.

[95]  R. Kühnel,et al.  Magnesium Ethylenediamine Borohydride as Solid-State Electrolyte for Magnesium Batteries , 2017, Scientific Reports.

[96]  A. Züttel,et al.  Complex hydrides for hydrogen storage. , 2007, Chemical reviews.

[97]  P. Reale,et al.  Magnesium hydride as a high capacity negative electrode for lithium ion batteries , 2012 .

[98]  Elsa Roedern,et al.  Effect of Eutectic Melting, Reactive Hydride Composites, and Nanoconfinement on Decomposition and Reversibility of LiBH4–KBH4 , 2015 .

[99]  R. Černý,et al.  Fast Ion Conduction in Garnet‐Type Metal Borohydrides Li3K3Ce2(BH4)12 and Li3K3La2(BH4)12. , 2016 .

[100]  D. D. Wagman,et al.  The NBS tables of chemical thermodynamic properties : selected values for inorganic and C1 and C2 organic substances in SI units , 1982 .

[101]  M. Latroche,et al.  Metal hydrides used as negative electrode materials for Li-ion batteries , 2016 .

[102]  W. David,et al.  A multidisciplinary combinatorial approach for tuning promising hydrogen storage materials towards automotive applications. , 2011, Faraday discussions.

[103]  J. R. Johnson,et al.  Reaction of hydrogen with the high temperature (C14) form of TiCr2 , 1980 .

[104]  M. Paskevicius,et al.  Hydriding characteristics of NaMgH2F with preliminary technical and cost evaluation of magnesium-based metal hydride materials for concentrating solar power thermal storage , 2014 .

[105]  M. Fichtner,et al.  Preparation of Li-Mg-N-H hydrogen storage materials for an auxiliary power unit , 2017 .

[106]  Y. Kojima,et al.  IR characterizations of lithium imide and amide , 2005 .

[107]  M. Armand,et al.  Building better batteries , 2008, Nature.

[108]  G. Charalambopoulou,et al.  Thermal coupling potential of Solid Oxide Fuel Cells with metal hydride tanks: Thermodynamic and design considerations towards integrated systems , 2014 .

[109]  S. Orimo,et al.  Complex Hydrides for Electrochemical Energy Storage , 2014 .

[110]  M. Paskevicius,et al.  Hydrogen Absorption Kinetics of the Transition-Metal-Chloride-Enhanced NaAlH4 System , 2012 .

[111]  W. Zhou,et al.  A new family of metal borohydride ammonia borane complexes: Synthesis, structures, and hydrogen storage properties , 2010 .

[112]  S. Strauss,et al.  Comparison of the Coordination of B12F122-, B12Cl122-, and B12H122- to Na+ in the Solid State: Crystal Structures and Thermal Behavior of Na2(B12F12), Na2(H2O)4(B12F12), Na2(B12Cl12), and Na2(H2O)6(B12Cl12). , 2017, Inorganic chemistry.

[113]  B. Bogdanovic,et al.  Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials , 1997 .

[114]  R. Černý,et al.  Synthesis, structure and dehydrogenation of zirconium borohydride octaammoniate. , 2015, Chemical communications.

[115]  Vitalij K. Pecharsky,et al.  Titanium catalyzed solid-state transformations in LiAlH4 during high-energy ball-milling , 2001 .

[116]  A. Pedersen,et al.  Dehydrogenation kinetics of as-received and ball-milled LiAlH4 , 2005 .

[117]  Andreas Züttel,et al.  Stabilization of volatile Ti(BH4)3 by nano-confinement in a metal–organic framework† †Electronic supplementary information (ESI) available: Structural characterizations and fit parameters. See DOI: 10.1039/c5sc03517a Click here for additional data file. , 2015, Chemical science.

[118]  A. Santoru,et al.  Ternary Amides Containing Transition Metals for Hydrogen Storage: A Case Study with Alkali Metal Amidozincates. , 2015, ChemSusChem.

[119]  C. Milanese,et al.  Kinetic improvement on the CaH 2 -catalyzed Mg(NH 2 ) 2 + 2LiH system , 2015 .

[120]  R. Brand,et al.  Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials , 2000 .

[121]  R. Varin,et al.  The effects of graphite on the reversible hydrogen storage of nanostructured lithium amide and lithium hydride (LiNH2 + 1.2LiH) system , 2011 .

[122]  P. Dantzer Properties of intermetallic compounds suitable for hydrogen storage applications , 2002 .

[123]  D. Dong,et al.  Thermal optimisation of metal hydride reactors for thermal energy storage applications , 2017 .

[124]  J. Tarascon,et al.  2LiH + M (M = Mg, Ti): New concept of negative electrode for rechargeable lithium-ion batteries , 2009 .

[125]  J. Bonnet,et al.  Reactivity of TiH2 hydride with lithium ion: Evidence for a new conversion mechanism , 2012 .

[126]  Y. Filinchuk,et al.  Nuclear Magnetic Resonance Studies of BH 4 Reorientations and Li Di ff usion in LiLa ( BH 4 ) 3 Cl , 2013 .

[127]  S. Hino,et al.  New Metal−N−H System Composed of Mg(NH2)2 and LiH for Hydrogen Storage , 2004 .

[128]  M. Paskevicius,et al.  Eutectic melting in metal borohydrides. , 2013, Physical chemistry chemical physics : PCCP.

[129]  Craig E. Buckley,et al.  Metal hydride thermal heat storage prototype for concentrating solar thermal power , 2015 .

[130]  Dalin Sun,et al.  The hydrogen-enriched Al-B-N system as an advanced solid hydrogen-storage candidate. , 2011, Angewandte Chemie.

[131]  Ping Chen,et al.  Amides and borohydrides for high-capacity solid-state hydrogen storage—materials design and kinetic improvements , 2013 .

[132]  Kondo‐François Aguey‐Zinsou,et al.  Thermal and mechanically activated decomposition of LiAlH4 , 2008 .

[133]  T. Jensen,et al.  New compounds in the potassium-aluminium-hydrogen system observed during release and uptake of hydrogen , 2012 .

[134]  Lars H. Jepsen,et al.  Boron-nitrogen based hydrides and reactive composites for hydrogen storage , 2014 .

[135]  H. Uchida,et al.  Influence of the Cyclic Hydriding-Dehydriding Treatment on Pressure-Composition-Temperature Relations of the LaNi5 — H System* , 1993 .

[136]  Line H. Rude,et al.  Tailoring properties of borohydrides for hydrogen storage: A review , 2011 .

[137]  S. Orimo,et al.  Effects of ball milling and additives on dehydriding behaviors of well-crystallized Mg(BH4)2 , 2007 .

[138]  H. Hagemann,et al.  Di-hydrogen contact induced lattice instabilities and structural dynamics in complex hydride perovskites , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[139]  W. Grochala,et al.  Probing Lewis acidity of Y(BH4)3 via its reactions with MBH4 (M = Li, Na, K, NMe4). , 2011, Dalton transactions.

[140]  Klaus Schlichte,et al.  The application of Mg-based metal-hydrides as heat energy storage systems , 2000 .

[141]  M. Paskevicius,et al.  In Situ Neutron Diffraction Study of the Deuteration of Isotopic Mg11B2 , 2011 .

[142]  Aaron W Thornton,et al.  Hydrogen Storage Materials for Mobile and Stationary Applications: Current State of the Art. , 2015, ChemSusChem.

[143]  S. Chan,et al.  Hydrogen storage for off-grid power supply , 2011 .

[144]  S. Orimo,et al.  Sodium superionic conduction in Na2B12H12. , 2014, Chemical communications.

[145]  Jean-Louis Bobet,et al.  Carboxymethylcellulose and carboxymethylcellulose-formate as binders in MgH2–carbon composites negative electrode for lithium-ion batteries , 2011 .

[146]  D. Sheppard,et al.  Destabilization of lithium hydride and the thermodynamic assessment of the Li–Al–H system for solar thermal energy storage , 2016 .

[147]  Yaroslav Filinchuk,et al.  Complex hydrides for hydrogen storage - New perspectives , 2014 .

[148]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[149]  B. Hauback Structures of aluminium-based light weight hydrides , 2008 .

[150]  A. Bouamrane,et al.  Structural characterization of NaMgH2F and NaMgH3 , 2000 .

[151]  Lars H. Jepsen,et al.  Tailoring the properties of ammine metal borohydrides for solid-state hydrogen storage. , 2015, ChemSusChem.

[152]  A. Santoru,et al.  New synthesis route for ternary transition metal amides as well as ultrafast amide-hydride hydrogen storage materials. , 2016, Chemical communications.

[153]  Rana Mohtadi,et al.  Magnesium Borohydride: From Hydrogen Storage to Magnesium Battery** , 2012, Angewandte Chemie.

[154]  E. C. Ashby,et al.  DIRECT SYNTHESIS OF COMPLEX METAL HYDRIDES , 1963 .

[155]  K. Robeyns,et al.  Mild dehydrogenation of ammonia borane complexed with aluminum borohydride , 2015 .

[156]  B. Hauback,et al.  Pressure–composition isotherms and thermodynamic properties of TiF3-enhanced Na2LiAlH6 , 2005 .

[157]  K. Oguro,et al.  Metal Hydride Anodes for Nickel‐Hydrogen Secondary Battery , 1990 .

[158]  Andreas Züttel,et al.  LiBH4 a new hydrogen storage material , 2003 .

[159]  G. Soloveichik,et al.  Structure of unsolvated magnesium borohydride Mg(BH(4))(2). , 2007, Acta crystallographica. Section B, Structural science.

[160]  R. Černý,et al.  Potassium Zinc Borohydrides Containing Triangular [Zn(BH4)3]- and Tetrahedral [Zn(BH4)xCl4-x]2- Anions , 2012 .

[161]  Xuebin Yu,et al.  Ammine aluminium borohydrides: an appealing system releasing over 12 wt% pure H2 under moderate temperature. , 2012, Chemical communications.

[162]  Marco Sommariva,et al.  Tuning the decomposition temperature in complex hydrides: synthesis of a mixed alkali metal borohydride. , 2008, Angewandte Chemie.

[163]  M. Fichtner,et al.  Double-Bridge Bonding of Aluminium and Hydrogen in the Crystal Structure of γ-AlH3 , 2007 .

[164]  K. Gavrichev Heat Capacity and Thermodynamic Properties of Inorganic Compounds Containing Tetrahedral Anions (BH-4, AlH-4, GaH-4, BF-4, ClO-4, BrO-4, and IO-4) , 2003 .

[165]  J. Jumas,et al.  Reactivity of complex hydrides Mg2FeH6, Mg2CoH5 and Mg2NiH4 with lithium ion: Far from equilibrium electrochemically driven conversion reactions , 2013 .

[166]  M. Dornheim Thermodynamics of Metal Hydrides: Tailoring Reaction Enthalpies of Hydrogen Storage Materials , 2011 .

[167]  Ping-Ou Chen,et al.  Thermodynamic and kinetic investigations of the hydrogen storage in the Li–Mg–N–H system , 2005 .

[168]  Vitalij K. Pecharsky,et al.  Solid State Phase Transformations in LiAlH4 During High-Energy Ball-Milling , 2000 .

[169]  H. Fujii,et al.  Evaluation of enthalpy change due to hydrogen desorption for lithium amide/imide system by differential scanning calorimetry , 2008 .

[170]  G. Soloveichik Battery technologies for large-scale stationary energy storage. , 2011, Annual review of chemical and biomolecular engineering.

[171]  Craig E. Buckley,et al.  Thermodynamic changes in mechanochemically synthesized magnesium hydride nanoparticles. , 2010, Journal of the American Chemical Society.

[172]  Takeshi Kobayashi,et al.  Solvent-free mechanochemical synthesis of alane, AlH3: effect of pressure on the reaction pathway , 2014 .

[173]  F. Barbir,et al.  The use of metal hydrides in fuel cell applications , 2017 .

[174]  M. Fichtner,et al.  Synthesis and properties of calcium alanate and two solvent adducts. , 2005, Inorganic chemistry.

[175]  S. Orimo,et al.  Halide-Stabilized LiBH4, a Room-Temperature Lithium Fast-Ion Conductor. , 2009 .

[176]  J. Graetz,et al.  The Crystal Structure of ?-AlD3. , 2007 .

[177]  J. Graetz,et al.  Regeneration of lithium aluminum hydride. , 2008, Journal of the American Chemical Society.

[178]  Line H. Rude,et al.  Synthesis and Structural Investigation of Zr(BH4)4 , 2012 .

[179]  E. Pinatel,et al.  A thermodynamic assessment of LiBH4 , 2012 .

[180]  Craig E. Buckley,et al.  Concentrating Solar Thermal Heat Storage Using Metal Hydrides , 2012, Proceedings of the IEEE.

[181]  K. Miwa,et al.  A novel inorganic solid state ion conductor for rechargeable Mg batteries. , 2014, Chemical communications.

[182]  D. Blanchard,et al.  Complex hydrides as room-temperature solid electrolytes for rechargeable batteries , 2016 .

[183]  Kasper T. Møller,et al.  Synthesis and thermal decomposition of potassium tetraamidoboranealuminate, K[Al(NH2BH3)4] , 2018 .

[184]  H. Fjellvåg,et al.  Synthesis, Crystal Structure, and Thermal Properties of the First Mixed-Metal and Anion-Substituted Rare Earth Borohydride LiCe(BH4)3Cl , 2011 .

[185]  Elsa Roedern,et al.  Ammine-Stabilized Transition-Metal Borohydrides of Iron, Cobalt, and Chromium: Synthesis and Characterization. , 2015, Inorganic chemistry.

[186]  Doron Aurbach,et al.  Challenges in the development of advanced Li-ion batteries: a review , 2011 .

[187]  Kiyotaka Goshome,et al.  Anode properties of Al2O3-added MgH2 for all-solid-state lithium-ion batteries , 2015, Journal of Solid State Electrochemistry.

[188]  K. Luo,et al.  Size-dependent kinetic enhancement in hydrogen absorption and desorption of the Li-Mg-N-H system. , 2009, Journal of the American Chemical Society.

[189]  T. Ichikawa,et al.  Electrochemical Performance of Titanium Hydride for Bulk-Type All-Solid-State Lithium-Ion Batteries , 2016 .

[190]  Son-Jong Hwang,et al.  Structure and vibrational dynamics of isotopically labeled lithium borohydride using neutron diffraction and spectroscopy , 2007 .

[191]  J. Tarascon,et al.  Metal hydrides for lithium-ion batteries. , 2008, Nature materials.

[192]  E. Veleckis Application of the hydrogen titration method to a thermodynamic investigation of solid Al-Ca alloys , 1981 .

[193]  Kondo‐François Aguey‐Zinsou,et al.  Hydrogen Absorption/Desorption Mechanism in Potassium Alanate (KAlH4) and Enhancement by TiCl3 Doping , 2009 .

[194]  Y. Filinchuk,et al.  New li ion conductors and solid state hydrogen storage materials: LiM(BH 4) 3Cl, M = La, Gd , 2012 .

[195]  F. Schüth,et al.  Comparative studies of the decomposition of alanates followed by in situ XRD and DSC methods , 2006 .

[196]  A. Züttel,et al.  Materials designing of metal borohydrides: Viewpoints from thermodynamical stabilities , 2007 .

[197]  A. Lundén On the Paddle -Wheel Mechanism for Cation Conduction in Lithium Sulphate , 1995 .

[198]  V. Stavila,et al.  Unparalleled Lithium and Sodium Superionic Conduction in Solid Electrolytes with Large Monovalent Cage-like Anions. , 2015, Energy & environmental science.

[199]  S. Hino,et al.  Hydrogen storage properties of lithium silicon alloy synthesized by mechanical alloying , 2011 .

[200]  A. Gray,et al.  The Thermal Decomposition of Lithium Aluminum Hydride , 1965 .

[201]  H. Fjellvåg,et al.  The crystal structure of the first borohydride borate, Ca3(BD4)3(BO3) , 2011 .

[202]  M. Polański,et al.  Nanoconfined NaAlH4: Determination of Distinct Prolific Effects from Pore Size, Crystallite Size, and Surface Interactions , 2012 .

[203]  K. Zaghib,et al.  Safe and fast-charging Li-ion battery with long shelf life for power applications , 2011 .

[204]  P. Norby,et al.  Desorption of LiAlH4 with Ti- and V-based additives , 2004 .

[205]  D. Sheppard,et al.  Lithium imide systems for high temperature heat storage in concentrated solar thermal systems , 2017 .

[206]  G. Sandrock,et al.  The IEA/DOE/SNL on-line hydride databases , 2001 .

[207]  B. Bogdanovic,et al.  Thermodynamic Investigation of the Magnesium—Hydrogen System. , 1999 .

[208]  J. Tarascon,et al.  Decomposition of LiAl(NH2)4 and Reaction with LiH for a Possible Reversible Hydrogen Storage , 2007 .

[209]  L. Farina,et al.  Lightweight Borohydrides Electro-Activity in Lithium Cells , 2016 .

[210]  Susanne M. Opalka,et al.  Modeling alkali alanates for hydrogen storage by density-functional band-structure calculations , 2005 .

[211]  D. Sheppard,et al.  Fluoride substitution in sodium hydride for thermal energy storage applications , 2016 .

[212]  Kasper T. Møller,et al.  Synthesis and thermal stability of perovskite alkali metal strontium borohydrides. , 2016, Dalton transactions.

[213]  P. Marty,et al.  Enhancement of hydrogen sorption in magnesium hydride using expanded natural graphite , 2009 .

[214]  Jason Graetz,et al.  New approaches to hydrogen storage. , 2009, Chemical Society reviews.

[215]  M. Paskevicius,et al.  Characterisation of mechanochemically synthesised alane (AlH3) nanoparticles , 2009 .

[216]  F. D. Manchester,et al.  Phase diagrams of binary hydrogen alloys , 2000 .

[217]  S. Peil,et al.  Thermochemical Heat Storage for High Temperature Applications – A Review , 2013 .

[218]  STRUCTURES AND THERMODYNAMICS OF THE MIXED ALKALI ALANATES , 2005, cond-mat/0501536.

[219]  Liwu Huang,et al.  MgH2–TiH2 mixture as an anode for lithium-ion batteries: synergic enhancement of the conversion electrode electrochemical performance , 2015 .

[220]  W. Zhou,et al.  LiBH4·NH3BH3: A new lithium borohydride ammonia borane compound with a novel structure and favorable hydrogen storage properties , 2012 .

[221]  J. Hanson,et al.  Reactivity of LiBH4: In Situ Synchrotron Radiation Powder X-ray Diffraction Study , 2008 .

[222]  Ulrich Eberle,et al.  Chemical and physical solutions for hydrogen storage. , 2009, Angewandte Chemie.

[223]  R. Černý,et al.  Synthesis, structure and properties of new bimetallic sodium and potassium lanthanum borohydrides. , 2016, Dalton transactions.

[224]  B. Bogdanovic,et al.  A process steam generator based on the high temperature magnesium hydride/magnesium heat storage system , 1995 .

[225]  H. Hagemann,et al.  Porous and dense magnesium borohydride frameworks: synthesis, stability, and reversible absorption of guest species. , 2011, Angewandte Chemie.

[226]  G. Sandrock,et al.  Accelerated thermal decomposition of AlH3 for hydrogen-fueled vehicles , 2005 .

[227]  Piyush Sabharwall,et al.  Engineering Database of Liquid Salt Thermophysical and Thermochemical Properties , 2010 .

[228]  V. Balema,et al.  Missing pieces of the puzzle or about some unresolved issues in solid state chemistry of alkali metal aluminohydrides. , 2005, Physical chemistry chemical physics : PCCP.

[229]  Georg Fieg,et al.  Concept, Design and Manufacture of a Prototype Hydrogen Storage Tank Based on Sodium Alanate , 2009 .

[230]  M. Polański,et al.  Improved hydrogen storage kinetics of nanoconfined NaAlH₄ catalyzed with TiCl₃ nanoparticles. , 2011, ACS nano.

[231]  Effective thermal management of a cylindrical MgH2 tank including thermal coupling with an operating SOFC and the usage of extended surfaces during the dehydrogenation process , 2016 .

[232]  Y. Filinchuk,et al.  Nuclear Magnetic Resonance Studies of BH4 Reorientations and Li Diffusion in LiLa(BH4)3Cl , 2013 .

[233]  Ferdi Schüth,et al.  Advanced Hydrogen‐Storage Materials Based on Sc‐, Ce‐, and Pr‐Doped NaAlH4 , 2006 .

[234]  M. Paskevicius,et al.  Novel methods for synthesizing halide-free alane without the formation of adducts , 2012 .

[235]  S. Orimo,et al.  Thermodynamical stability and electronic structure of a perovskite-type hydride, NaMgH3 , 2007 .

[236]  S. Greenbaum,et al.  Investigation of the effects of mechanochemical treatment on NaAlH4 based anode materials for Li-ion batteries , 2016 .

[237]  H. Hagemann,et al.  Fluoride substitution in LiBH4; destabilization and decomposition. , 2017, Physical chemistry chemical physics : PCCP.

[238]  Jianqiu Li,et al.  A review on the key issues for lithium-ion battery management in electric vehicles , 2013 .

[239]  B. Hauback,et al.  Mechanochemical synthesis of alane , 2009 .

[240]  S. Greenbaum,et al.  NaAlH4 Nanoconfinement in a Mesoporous Carbon for Application in Lithium Ion Batteries , 2017 .

[241]  M. Paskevicius,et al.  Halogenated Sodium-closo-Dodecaboranes as Solid-State Ion Conductors , 2017 .

[242]  R. Černý,et al.  Trimetallic borohydride Li3MZn5(BH4)15 (M = Mg, Mn) containing two weakly interconnected frameworks. , 2013, Inorganic chemistry.

[243]  Lars H. Jepsen,et al.  A composite of complex and chemical hydrides yields the first Al-based amidoborane with improved hydrogen storage properties. , 2015, Chemistry.

[244]  M. Paskevicius,et al.  In-Situ X-ray Diffraction Study of γ-Mg(BH4)2 Decomposition , 2012 .

[245]  H. Ohshita,et al.  Structural and Hydrogen Desorption Properties of Aluminum Hydride , 2011 .

[246]  T. Ichikawa,et al.  Anode properties of magnesium hydride catalyzed with niobium oxide for an all solid-state lithium-ion battery. , 2013, Chemical communications.

[247]  Ping Li,et al.  Investigation on LiBH4-CaH2 composite and its potential for thermal energy storage , 2017, Scientific Reports.

[248]  M. Paskevicius,et al.  Mechanochemical synthesis of aluminium nanoparticles and their deuterium sorption properties to 2 kbar , 2009 .

[249]  Kasper T. Møller,et al.  Hydrogen - A sustainable energy carrier , 2017 .

[250]  H. Hagemann,et al.  Structure and properties of complex hydride perovskite materials , 2014, Nature Communications.

[251]  J. Reilly,et al.  Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4 , 1968 .

[252]  D D Wagman,et al.  Erratum: The NBS tables of chemical thermodynamic properties. Selected values for inorganic and C1 and C2 organic substances in SI units [J. Phys. Chem. Ref. Data 11, Suppl. 2 (1982)] , 1989 .

[253]  D. Sheppard,et al.  Technical challenges and future direction for high-efficiency metal hydride thermal energy storage systems , 2016, Applied Physics A.

[254]  T. Ichikawa,et al.  Bulk-Type All-Solid-State Lithium-Ion Batteries: Remarkable Performances of a Carbon Nanofiber-Supported MgH2 Composite Electrode. , 2017, ACS applied materials & interfaces.

[255]  M. Polański,et al.  Nanoconfined NaAlH4: prolific effects from increased surface area and pore volume. , 2014, Nanoscale.

[256]  F. Besenbacher,et al.  Structural studies of lithium zinc borohydride by neutron powder diffraction, Raman and NMR Spectroscopy , 2011 .

[257]  R. Zidan,et al.  Li-Driven Electrochemical Conversion Reaction of AlH3, LiAlH4, and NaAlH4 , 2015 .

[258]  M. Paskevicius,et al.  Thermodynamics of Hydrogen Desorption from NaMgH3 and Its Application As a Solar Heat Storage Medium , 2011 .

[259]  Vitalij K. Pecharsky,et al.  Rapid solid-state transformation of tetrahedral [AlH4]− into octahedral [AlH6]3− in lithium aluminohydride , 2000 .

[260]  R. Černý,et al.  The crystal chemistry of inorganic metal borohydrides and their relation to metal oxides. , 2015, Acta crystallographica Section B, Structural science, crystal engineering and materials.

[261]  Lars H. Jepsen,et al.  Metal borohydrides and derivatives - synthesis, structure and properties. , 2017, Chemical Society reviews.

[262]  L. Farina,et al.  Reactivity of Sodium Alanates in Lithium Batteries , 2015 .

[263]  M. Sørby,et al.  The crystal structure and stability of K2NaAlH6 , 2006 .

[264]  C. B. Roberts,et al.  Preparation and properties of aluminum hydride , 1976 .

[265]  M. Wohlfahrt‐Mehrens,et al.  Ageing mechanisms in lithium-ion batteries , 2005 .

[266]  Electrochemical charge and discharge properties for the formation of magnesium and aluminum hydrides , 2011 .

[267]  B. Bogdanovic,et al.  Thermodynamics and dynamics of the Mg–Fe–H system and its potential for thermochemical thermal energy storage , 2002 .

[268]  E. C. Ashby,et al.  Thermal decomposition of complex metal hydrides , 1972 .

[269]  Kasper T. Møller,et al.  Perovskite alkali metal samarium borohydrides: crystal structures and thermal decomposition. , 2017, Dalton transactions.

[270]  Bruno G. Pollet,et al.  Metal hydride hydrogen compressors: A review , 2014 .

[271]  Michael E. Lesk,et al.  The Old Is New Again , 2013, IEEE Security & Privacy.

[272]  Young-Su Lee,et al.  LiCe(BH 4) 3Cl, a new lithium-ion conductor and hydrogen storage material with isolated tetranuclear anionic clusters , 2012 .

[273]  P. Huen,et al.  Nanoconfined NaAlH4 Conversion Electrodes for Li Batteries , 2017, ACS omega.