Fortuitous convergences: the beginnings of JUN

[1]  P. Vogt,et al.  Jun, the oncoprotein , 2001, Oncogene.

[2]  Hans van Dam,et al.  Distinct roles of Jun : Fos and Jun : ATF dimers in oncogenesis , 2001, Oncogene.

[3]  D. Gillespie,et al.  Analysis of the Interaction between c-Jun and c-Jun N-terminal Kinase in Vivo * , 1998, The Journal of Biological Chemistry.

[4]  D. Gillespie,et al.  v-Jun represses c-jun proto-oncogene expression in vivo through a 12-O-tetradecanoylphorbol-13-acetate-responsive element in the proximal gene promoter. , 1998, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research.

[5]  D. Gillespie,et al.  The v-Jun oncoprotein replaces p39 c-Jun as the predominant AP-1 constituent in ASV17-transformed fibroblasts: implications for SAPK/JNK-mediated signal transduction. , 1996, Oncogene.

[6]  J. Woodgett,et al.  Stress-activated protein kinases bind directly to the delta domain of c-Jun in resting cells: implications for repression of c-Jun function. , 1995, Oncogene.

[7]  J. N. Mark Glover,et al.  Crystal structure of the heterodimeric bZIP transcription factor c-Fos–c-Jun bound to DNA , 1995, Nature.

[8]  J. Woodgett,et al.  Transcriptional activation by the v-Jun oncoprotein is independent of positive regulatory phosphorylation. , 1994, Oncogene.

[9]  A. Kraft,et al.  A peptide encoding the c-Jun delta domain inhibits the activity of a c-jun amino-terminal protein kinase. , 1994, The Journal of biological chemistry.

[10]  M. Karin,et al.  JNK1: A protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain , 1994, Cell.

[11]  M. Karin,et al.  Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. , 1993, Genes & development.

[12]  B. Emanuel,et al.  Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma , 1993, Nature Genetics.

[13]  E. Wagner,et al.  c-Jun is essential for normal mouse development and hepatogenesis , 1993, Nature.

[14]  J. Woodgett,et al.  Co-purification of mitogen-activated protein kinases with phorbol ester-induced c-Jun kinase activity in U937 leukaemic cells. , 1993, Oncogene.

[15]  E. Wagner,et al.  Bone and haematopoietic defects in mice lacking c-fos , 1992, Nature.

[16]  E. Wagner,et al.  Embryonic stem (ES) cells lacking functional c-jun: consequences for growth and differentiation, AP-1 activity and tumorigenicity. , 1992, Oncogene.

[17]  A. Kraft,et al.  Affinity-purified c-Jun amino-terminal protein kinase requires serine/threonine phosphorylation for activity. , 1992, The Journal of biological chemistry.

[18]  P. S. Kim,et al.  Mechanism of specificity in the Fos-Jun oncoprotein heterodimer , 1992, Cell.

[19]  K. Umesono,et al.  Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RARα with a novel putative transcription factor, PML , 1991, Cell.

[20]  B. Vogelstein,et al.  p53 mutations in human cancers. , 1991, Science.

[21]  Tsonwin Hai,et al.  Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[22]  C. Chang,et al.  Efficient transformation of chicken embryo fibroblasts by c-Jun requires structural modification in coding and noncoding sequences. , 1990, Genes & development.

[23]  I. Verma,et al.  mXBP/CRE-BP2 and c-Jun form a complex which binds to the cyclic AMP, but not to the 12-O-tetradecanoylphorbol-13-acetate, response element , 1990, Molecular and cellular biology.

[24]  N. Jones,et al.  Heterodimer formation between CREB and JUN proteins. , 1990, Oncogene.

[25]  Y. Nakabeppu,et al.  The basic region of Fos mediates specific DNA binding. , 1989, The EMBO journal.

[26]  M. Karin,et al.  Different requirements for formation of Jun: Jun and Jun: Fos complexes. , 1989, Genes & development.

[27]  T. Kouzarides,et al.  Leucine zippers of fos, jun and GCN4 dictate dimerization specificity and thereby control DNA binding , 1989, Nature.

[28]  P S Kim,et al.  Preferential heterodimer formation by isolated leucine zippers from fos and jun. , 1989, Science.

[29]  M. Yaniv,et al.  Characterization of junD: a new member of the jun proto‐oncogene family. , 1989, The EMBO journal.

[30]  R. Tjian,et al.  Leucine repeats and an adjacent DNA binding domain mediate the formation of functional cFos-cJun heterodimers. , 1989, Science.

[31]  T. Curran,et al.  Parallel association of Fos and Jun leucine zippers juxtaposes DNA binding domains. , 1989, Science.

[32]  M. Zerial,et al.  The product of a novel growth factor activated gene, fos B, interacts with JUN proteins enhancing their DNA binding activity. , 1989, The EMBO journal.

[33]  I. Verma,et al.  Direct interaction between fos and jun nuclear oncoproteins: role of the 'leucine zipper' domain , 1988, Nature.

[34]  Y. Nakabeppu,et al.  DNA binding activities of three murine Jun proteins: Stimulation by Fos , 1988, Cell.

[35]  Michael E. Greenberg,et al.  c-Jun dimerizes with itself and with c-Fos, forming complexes of different DNA binding affinities , 1988, Cell.

[36]  B. Franza,et al.  Fos and Jun bind cooperatively to the AP-1 site: reconstitution in vitro. , 1988, Genes & development.

[37]  I. Verma,et al.  fos-associated cellular p39 is related to nuclear transcription factor AP-1 , 1988, Cell.

[38]  S. McKnight,et al.  The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. , 1988, Science.

[39]  R. Tjian,et al.  Fos-associated protein p39 is the product of the jun proto-oncogene. , 1988, Science.

[40]  T. Curran,et al.  fra-1: a serum-inducible, cellular immediate-early gene that encodes a fos-related antigen , 1988, Molecular and cellular biology.

[41]  T. Hunter,et al.  Oncogene jun encodes a sequence-specific trans- activator similar to AP-1 , 1988, Nature.

[42]  B. Franza,et al.  The Fos complex and Fos-related antigens recognize sequence elements that contain AP-1 binding sites. , 1988, Science.

[43]  L. Lau,et al.  A gene activated by growth factors is related to the oncogene v-jun. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[44]  B. Spiegelman,et al.  Common DNA binding site for Fos protein complexesand transcription factor AP-1 , 1988, Cell.

[45]  R. Tjian,et al.  Human proto-oncogene c-jun encodes a DNA binding protein with structural and functional properties of transcription factor AP-1. , 1987, Science.

[46]  K. Struhl The DNA-binding domains of the jun oncoprotein and the yeast GCN4 transcriptional activator protein are functionally homologous , 1987, Cell.

[47]  K. Struhl,et al.  GCN4, a eukaryotic transcriptional activator protein, binds as a dimer to target DNA. , 1987, The EMBO journal.

[48]  M. Karin,et al.  Phorbol ester-inducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor , 1987, Cell.

[49]  R. Tjian,et al.  Purified transcription factor AP-1 interacts with TPA-inducible enhancer elements , 1987, Cell.

[50]  P. Vogt,et al.  Avian sarcoma virus 17 carries the jun oncogene. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[51]  R. Doolittle,et al.  Homology between the DNA-binding domain of the GCN4 regulatory protein of yeast and the carboxyl-terminal region of a protein coded for by the oncogene jun. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[52]  R. Tjian,et al.  Activation of transcription by two factors that bind promoter and enhancer sequences of the human metallothionein gene and SV40 , 1987, Nature.

[53]  K. Struhl,et al.  Functional dissection of a eukaryotic transcriptional activator protein, GCN4 of Yeast , 1986, Cell.

[54]  N. Heisterkamp,et al.  Evidence of a new chimeric bcr/c-abl mRNA in patients with chronic myelocytic leukemia and the Philadelphia chromosome. , 1985, The New England journal of medicine.

[55]  K. Struhl,et al.  GCN4 protein, synthesize in vitro, binds HIS3 regulatory sequences: Implications for general control of amino acid biosynthetic genes in yeast , 1985, Cell.

[56]  A. Hinnebusch A hierarchy of trans-acting factors modulates translation of an activator of amino acid biosynthetic genes in Saccharomyces cerevisiae , 1985, Molecular and cellular biology.

[57]  G. Thireos,et al.  5' untranslated sequences are required for the translational control of a yeast regulatory gene. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[58]  G. Lucchini,et al.  Positive regulatory interactions of the HIS4 gene of Saccharomyces cerevisiae , 1984, Molecular and cellular biology.

[59]  T. Curran,et al.  FBJ murine osteosarcoma virus: identification and molecular cloning of biologically active proviral DNA , 1982, Journal of virology.

[60]  R. Weinberg,et al.  Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene , 1982, Nature.

[61]  C. Der,et al.  Transforming genes of human bladder and lung carcinoma cell lines are homologous to the ras genes of Harvey and Kirsten sarcoma viruses. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[62]  T. Curran,et al.  Candidate product of the FBJ murine osteosarcoma virus oncogene: characterization of a 55,000-dalton phosphoprotein , 1982, Journal of virology.

[63]  T. Curran,et al.  Identification of a 39,000-dalton protein in cells transformed by the FBJ murine osteosarcoma virus. , 1982, Virology.

[64]  H. Iba,et al.  Cloning and characterisation of the mouse fra-2 gene. , 1994, Oncogene.

[65]  P. Sassone-Corsi,et al.  fos and jun interaction: The role of the leucine zipper , 1989, International journal of cancer. Supplement = Journal international du cancer. Supplement.

[66]  M. Karin,et al.  Jun and v-jun contain multiple regions that participate in transcriptional activation in an interdependent manner. , 1989, The New biologist.

[67]  A. Hinnebusch,et al.  The general control of amino acid biosynthetic genes in the yeast Saccharomyces cerevisiae. , 1986, CRC critical reviews in biochemistry.

[68]  M. Barbacid,et al.  Transforming genes in human tumors , 1982, Journal of cellular biochemistry.