Regiochemical effects for the mechanochemical activation of 9‐π‐extended anthracene‐maleimide Diels–Alder adducts

[1]  M. Robb,et al.  Examining the Impact of Relative Mechanophore Activity on the Selectivity of Ultrasound-Induced Mechanochemical Chain Scission. , 2022, ACS macro letters.

[2]  C. Creton,et al.  A molecular interpretation of the toughness of multiple network elastomers at high temperature , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Guillaume De Bo,et al.  Stereoelectronic effects in force-accelerated retro-Diels–Alder reactions , 2022, Synlett.

[4]  M. Stratigaki,et al.  Confocal Microscopy Visualizes ParticleCrack Interactions in Epoxy Composites with Optical Force Probe-Cross-Linked Rubber Particles , 2022, Macromolecules.

[5]  M. Robb,et al.  Quantifying Activation Rates of Scissile Mechanophores and the Influence of Dispersity , 2021, Macromolecules.

[6]  R. Göstl,et al.  Triazole-Extended Anthracenes as Optical Force Probes , 2021, Synlett.

[7]  T. Martínez,et al.  Flyby reaction trajectories: Chemical dynamics under extrinsic force , 2021, Science.

[8]  R. Göstl,et al.  Multicolor Mechanofluorophores for the Quantitative Detection of Covalent Bond Scission in Polymers , 2021, Angewandte Chemie.

[9]  M. Ciccotti,et al.  Why is mechanical fatigue different from toughness in elastomers? The role of damage by polymer chain scission , 2021, Science advances.

[10]  R. Boulatov,et al.  The many flavours of mechanochemistry and its plausible conceptual underpinnings , 2021, Nature Reviews Chemistry.

[11]  M. Sommer Substituent Effects Control Spiropyran-Merocyanine Equilibria and Mechanochromic Utility. , 2020, Macromolecular rapid communications.

[12]  D. Storti,et al.  The role of polymer mechanochemistry in responsive materials and additive manufacturing , 2020, Nature Reviews Materials.

[13]  M. Robb,et al.  Validation of the CoGEF Method as a Predictive Tool for Polymer Mechanochemistry. , 2020, Journal of the American Chemical Society.

[14]  R. Göstl,et al.  Going with the Flow: Tunable Flow‐Induced Polymer Mechanochemistry , 2020, Advanced Functional Materials.

[15]  Haiyang Yang,et al.  Rhodamine Mechanophore Functionalized Mechanochromic Double Network Hydrogels with High Sensitivity to Stress , 2020, Chinese Journal of Polymer Science.

[16]  A. Herrmann,et al.  Anti‐Stokes Stress Sensing: Mechanochemical Activation of Triplet–Triplet Annihilation Photon Upconversion , 2019, Angewandte Chemie.

[17]  Nancy R. Sottos,et al.  Mechanical Reactivity of Two Different Spiropyran Mechanophores in Polydimethylsiloxane , 2018, Macromolecules.

[18]  Yangju Lin,et al.  Regiochemical Effects on Mechanophore Activation in Bulk Materials. , 2018, Journal of the American Chemical Society.

[19]  T. Aljohani,et al.  Polymer Mechanochemistry: Manufacturing Is Now a Force to Be Reckoned With , 2018, Chem.

[20]  W. Brittain,et al.  Substituent Effects and Mechanism in a Mechanochemical Reaction. , 2018, Journal of the American Chemical Society.

[21]  Guillaume De Bo,et al.  Controlling Reactivity by Geometry in Retro-Diels-Alder Reactions under Tension. , 2017, Journal of the American Chemical Society.

[22]  D. Marx,et al.  Unclicking the Click: Metal-Assisted Mechanochemical Cycloreversion of Triazoles Is Possible. , 2017, Angewandte Chemie.

[23]  N. Zhang,et al.  Novel Reversible Mechanochromic Elastomer with High Sensitivity: Bond Scission and Bending-Induced Multicolor Switching. , 2017, ACS applied materials & interfaces.

[24]  Tae Ann Kim,et al.  Regioisomer-Specific Mechanochromism of Naphthopyran in Polymeric Materials. , 2016, Journal of the American Chemical Society.

[25]  Shiping Zhu,et al.  Photo-inactive divinyl spiropyran mechanophore cross-linker for real-time stress sensing , 2016 .

[26]  R. Sijbesma,et al.  Promoting Mechanochemistry of Covalent Bonds by Noncovalent Micellar Aggregation. , 2016, ACS macro letters.

[27]  K. Blank,et al.  Mechanical Reversibility of Strain-Promoted Azide-Alkyne Cycloaddition Reactions. , 2016, Angewandte Chemie.

[28]  S. Craig,et al.  Reactivity and Mechanism of a Mechanically Activated anti-Woodward-Hoffmann-DePuy Reaction. , 2015, Journal of the American Chemical Society.

[29]  S. Craig,et al.  Accelerating a Mechanically Driven anti-Woodward-Hoffmann Ring Opening with a Polymer Lever Arm Effect. , 2015, The Journal of organic chemistry.

[30]  D. Marx,et al.  Should the Woodward-Hoffmann Rules be Applied to Mechanochemical Reactions? , 2015, Chemphyschem : a European journal of chemical physics and physical chemistry.

[31]  S. Craig,et al.  Force-rate characterization of two spiropyran-based molecular force probes. , 2015, Journal of the American Chemical Society.

[32]  Frank A. Leibfarth,et al.  Strain-Induced Strengthening of the Weakest Link: The Importance of Intermediate Geometry for the Outcome of Mechanochemical Reactions , 2014 .

[33]  G. Cravotto,et al.  On the mechanochemical activation by ultrasound. , 2013, Chemical Society reviews.

[34]  Christopher W. Bielawski,et al.  Molecular catch bonds and the anti-Hammond effect in polymer mechanochemistry. , 2013, Journal of the American Chemical Society.

[35]  Jeffrey S. Moore,et al.  Structure-mechanochemical activity relationships for cyclobutane mechanophores. , 2011, Journal of the American Chemical Society.

[36]  M. Beyer,et al.  The mechanical strength of a covalent bond calculated by density functional theory , 2000 .