Sneak Pique: Exploring Autocompletion as a Data Discovery Scaffold for Supporting Visual Analysis

Natural language interaction has evolved as a useful modality to help users explore and interact with their data during visual analysis. Little work has been done to explore how autocompletion can help with data discovery while helping users formulate analytical questions. We developed a system called \system as a design probe to better understand the usefulness of autocompletion for visual analysis. We ran three Mechanical Turk studies to evaluate user preferences for various text- and visualization widget-based autocompletion design variants for helping with partial search queries. Our findings indicate that users found data previews to be useful in the suggestions. Widgets were preferred for previewing temporal, geospatial, and numerical data while text autocompletion was preferred for categorical and hierarchical data. We conducted an exploratory analysis of our system implementing this specific subset of preferred autocompletion variants. Our insights regarding the efficacy of these autocompletion suggestions can inform the future design of natural language interfaces supporting visual analysis.

[1]  Ina Fourie Online Retrieval: A Dialogue of Theory and Practice (2nd ed.) , 2000 .

[2]  Vidya Setlur,et al.  Applying Pragmatics Principles for Interaction with Visual Analytics , 2018, IEEE Transactions on Visualization and Computer Graphics.

[3]  Terence Parr,et al.  Adaptive LL(*) parsing: the power of dynamic analysis , 2014, OOPSLA 2014.

[4]  Gene Golovchinsky,et al.  Queries? Links? Is there a difference? , 1997, CHI.

[5]  Guoliang Li,et al.  Efficient fuzzy full-text type-ahead search , 2011, The VLDB Journal.

[6]  Nicholas J. Belkin,et al.  Ask for Information Retrieval: Part I. Background and Theory , 1997, J. Documentation.

[7]  Surajit Chaudhuri,et al.  Extending autocompletion to tolerate errors , 2009, SIGMOD Conference.

[8]  H. V. Jagadish,et al.  Assisted querying using instant-response interfaces , 2007, SIGMOD '07.

[9]  Jianliang Xu,et al.  AutoG: a visual query autocompletion framework for graph databases , 2017, The VLDB Journal.

[10]  Vidya Setlur,et al.  Eviza: A Natural Language Interface for Visual Analysis , 2016, UIST.

[11]  Ben Shneiderman,et al.  Using vision to think , 1999 .

[12]  Karrie Karahalios,et al.  DataTone: Managing Ambiguity in Natural Language Interfaces for Data Visualization , 2015, UIST.

[13]  Jeffrey Heer,et al.  Scented Widgets: Improving Navigation Cues with Embedded Visualizations , 2007, IEEE Transactions on Visualization and Computer Graphics.

[14]  Abdigani Diriye,et al.  The future is in the past: designing for exploratory search , 2012, IIiX.

[15]  Guoliang Li,et al.  Efficient type-ahead search on relational data: a TASTIER approach , 2009, SIGMOD Conference.

[16]  H. V. Jagadish,et al.  Effective Phrase Prediction , 2007, VLDB.

[17]  Ingmar Weber,et al.  Type less, find more: fast autocompletion search with a succinct index , 2006, SIGIR.

[18]  Jaime Teevan,et al.  How people recall, recognize, and reuse search results , 2008, ACM Trans. Inf. Syst..

[19]  Huizhong Duan,et al.  Online spelling correction for query completion , 2011, WWW.

[20]  Bojan Savric,et al.  The Equal Earth map projection , 2018, Int. J. Geogr. Inf. Sci..

[21]  Joemon M. Jose,et al.  Recent and robust query auto-completion , 2014, WWW.

[22]  Thomas P. Kehler,et al.  ATN Grammar Modeling in Applied Linguistics , 1980, ACL.

[23]  Pat Hanrahan,et al.  Polaris: A System for Query, Analysis, and Visualization of Multidimensional Relational Databases , 2002, IEEE Trans. Vis. Comput. Graph..

[24]  William C. Mann,et al.  Rhetorical Structure Theory: Toward a functional theory of text organization , 1988 .

[25]  Mark Sanderson,et al.  NRT: News Retrieval Tool , 1991, Electron. Publ..

[26]  Abhinav Kumar,et al.  Towards a dialogue system that supports rich visualizations of data , 2016, SIGDIAL Conference.

[27]  Alfred V. Aho,et al.  The Theory of Parsing, Translation, and Compiling , 1972 .

[28]  Jeffrey Heer,et al.  SpanningAspectRatioBank Easing FunctionS ArrayIn ColorIn Date Interpolator MatrixInterpola NumObjecPointI Rectang ISchedu Parallel Pause Scheduler Sequen Transition Transitioner Transiti Tween Co DelimGraphMLCon IData JSONCon DataField DataSc Dat DataSource Data DataUtil DirtySprite LineS RectSprite , 2011 .

[29]  John T. Stasko,et al.  Orko: Facilitating Multimodal Interaction for Visual Exploration and Analysis of Networks , 2018, IEEE Transactions on Visualization and Computer Graphics.

[30]  Vidya Setlur,et al.  Inferencing underspecified natural language utterances in visual analysis , 2019, IUI.

[31]  David M. Nichols,et al.  Designing interfaces to support collaboration in information retrieval , 1998, Interact. Comput..

[32]  Johan Bos,et al.  Computational Semantics in Discourse: Underspecification, Resolution, and Inference , 2004, J. Log. Lang. Inf..

[33]  Pat Hanrahan,et al.  Show Me: Automatic Presentation for Visual Analysis , 2007, IEEE Transactions on Visualization and Computer Graphics.

[34]  HeerJeffrey,et al.  D3 Data-Driven Documents , 2011 .

[35]  Milad Shokouhi,et al.  Learning to personalize query auto-completion , 2013, SIGIR.

[36]  Geraldene Walker,et al.  Online Retrieval: A Dialogue of Theory and Practice , 1993 .

[37]  Nicholas J. Belkin,et al.  Ask for Information Retrieval: Part II. Results of a Design Study , 1982, J. Documentation.

[38]  Milad Shokouhi,et al.  Time-sensitive query auto-completion , 2012, SIGIR '12.

[39]  Carol Collier Kuhlthau,et al.  Inside the search process: Information seeking from the user's perspective , 1991, J. Am. Soc. Inf. Sci..

[40]  Kunihiko Sadakane,et al.  Efficient Error-tolerant Query Autocompletion , 2013, Proc. VLDB Endow..

[41]  Michael S. Bernstein,et al.  Inky: a sloppy command line for the web with rich visual feedback , 2008, UIST '08.

[42]  Robert S. Taylor Question-Negotiation and Information Seeking in Libraries , 1968, Coll. Res. Libr..

[43]  Karsten Müller,et al.  Representation of time in digital calendars: An argument for a unified, continuous and multi-granular calendar view , 2014, Int. J. Hum. Comput. Stud..

[44]  Tobias Scheffer,et al.  Sentence Completion , 1921, SIGIR '04.

[45]  Guoliang Li,et al.  Supporting efficient top-k queries in type-ahead search , 2012, SIGIR '12.

[46]  M. de Rijke,et al.  Diversifying Query Auto-Completion , 2016, ACM Trans. Inf. Syst..

[47]  Pernilla Qvarfordt,et al.  Looking ahead: query preview in exploratory search , 2013, SIGIR.

[48]  Craig MacDonald,et al.  Comparing Approaches for Query Autocompletion , 2015, SIGIR.

[49]  Peter Morville,et al.  Search Patterns - Design for Discovery , 2010 .

[50]  Gary Marchionini,et al.  Exploratory search , 2006, Commun. ACM.

[51]  Kevin Crowston,et al.  Amazon Mechanical Turk: A Research Tool for Organizations and Information Systems Scholars , 2012, Shaping the Future of ICT Research.