A Global Approach to the Control of an Industry Structure System Dynamics Model

We consider a system dynamics model that describes the effect of human activity on natural resources. The central stocks are the accumulated profit, the industry structures, and the water resources. The model can be controlled through two time-dependent parameters. The goal in this paper is to find a parameter setting that leads to a maximization of a performance index, which reflects both environmental and economic aspects. Thus, the goal is to identify the most sustainable stock of industry structures within the model's constraints and assumptions. In order to find a proven global optimal parameter set, we formulate the System Dynamics Optimization model as a mixed-integer nonlinear problem that is accessible for numerical solvers. Due to the dynamic structure of the model, certain steps of the solution process must be handled with greater care, compared to standard non-dynamic problems. We describe our approach of solving the industry structure model and present computational results. In addition, we discuss the limitations of the approach and next steps.

[1]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[2]  George P. Richardson,et al.  Feedback Thought in Social Science and Systems Theory , 1991 .

[3]  Charlotte A. Roberts,et al.  An Overview of Strategy and Tactics in System Dynamics Optimization , 1996 .

[4]  Robert E. Bixby,et al.  Solving Real-World Linear Programs: A Decade and More of Progress , 2002, Oper. Res..

[5]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[6]  Armin Fügenschuh,et al.  Modern tools for the time-discrete dynamics and optimization of gene-environment networks , 2011 .

[7]  Armin Fügenschuh,et al.  MIP presolve techniques for a PDE-based supply chain model , 2009, Optim. Methods Softw..

[8]  Andrew Ford,et al.  Statistical screening of system dynamics models , 2005 .

[9]  A. Fügenschuh,et al.  A Global Approach to the Optimal Control of System Dynamics Models , 2013 .

[10]  Armin Fügenschuh,et al.  Computational Integer Programming and Cutting Planes , 2005 .

[11]  Jay Wright Forrester,et al.  Principles of systems : text and workbook, chapters 1 through 10 , 1968 .

[12]  J. Forrester Industrial Dynamics , 1997 .

[13]  Edward M. B. Smith,et al.  A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs , 1999 .

[14]  Nikolaos V. Sahinidis,et al.  Global optimization of mixed-integer nonlinear programs: A theoretical and computational study , 2004, Math. Program..

[15]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[16]  Fred W. Glover,et al.  Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..

[17]  A. Fügenschuh,et al.  A Unified View on Relaxations for a Nonlinear Network Flow Problem , 2013 .

[18]  Laurence A. Wolsey,et al.  Integer and Combinatorial Optimization , 1988 .

[19]  Timo Berthold,et al.  Extending a CIP framework to solve MIQCPs , 2012 .

[20]  Mohammad Mojtahedzadeh Do parallel lines meet? How can pathway participation metrics and eigenvalue analysis produce similar results? , 2008 .

[21]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[22]  A. Ruszczynski,et al.  Nonlinear Optimization , 2006 .

[23]  Nikolaos V. Sahinidis,et al.  A polyhedral branch-and-cut approach to global optimization , 2005, Math. Program..

[24]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[25]  Tobias Achterberg,et al.  SCIP: solving constraint integer programs , 2009, Math. Program. Comput..

[26]  George P. Richardson,et al.  Introduction to System Dynamics Modeling with DYNAMO , 1981 .

[27]  Rogelio Oliva,et al.  Loop Eigenvalue Elasticity Analysis: Three Case Studies , 2006 .

[28]  Günther Seliger,et al.  Sustainable Consumption of Water by NEGA-Resources Approach , 2012 .

[29]  E. M. L. Beale,et al.  Global optimization using special ordered sets , 1976, Math. Program..

[30]  S. Dreyfus,et al.  Thermodynamical Approach to the Traveling Salesman Problem : An Efficient Simulation Algorithm , 2004 .

[31]  Armin Fügenschuh,et al.  The Freight Train Routing Problem , 2013 .

[32]  Roland Wunderling,et al.  Paralleler und objektorientierter Simplex-Algorithmus , 1996 .