F1.12: Multicriteria Decision Making and Evolutionary Computation

Applying evolutionary computation (EC) to multicriteria decision making addresses two diicult problems: (1) searching intractably large and complex spaces and (2) deciding among multiple objectives. Both of these problems are open areas of research, but relatively little work has been done on the COMBINED problem of searching large spaces to meet multiple objectives. While multicriteria decision analysis usually assumes a small number of alternative solutions to choose from, or an \easy" (e.g., linear) space to search, research on robust search methods generally assumes some way of aggregating multiple objectives into a single gure of merit. This traditional separation of search and multicriteria decisions allows for two straightforward hybrid strategies: (1) make multicriteria decisions FIRST, to aggregate objectives, then apply EC search to optimize the resulting gure of merit, or (2) conduct multiple EC searches FIRST using diierent aggregations of the objectives in order to obtain a range of alternative solutions, then make a multicriteria decision to choose among the reduced set of solutions. Over the years a number of studies have successfully used one or the other of these two simple hybrid approaches. Recently, however, many studies have implemented Pareto-based EC search to sample the entire Pareto-optimal set of non-dominated solutions. And a few researchers have suggested ways of INTEGRATING multicriteria decision making and EC search, by iteratively using EC search to sample the tradeoo surface while using multicriteria decision making to successively narrow the search. Although all these approaches have received only limited testing and analysis, there are few comparable alternatives to multicriteria EC search (for searching intractably large spaces to meet multiple criteria).

[1]  Frank Kursawe,et al.  A Variant of Evolution Strategies for Vector Optimization , 1990, PPSN.

[2]  V. Vemuri,et al.  A new genetic algorithm for multi-objective optimization in water resource management , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[3]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[4]  WB Langdon Evolving Data Structures Using Genetic Programming , 1995 .

[5]  Andrzej Osyczka,et al.  Multicriterion optimization in engineering with FORTRAN programs , 1984 .

[6]  A. Osyczka,et al.  A new method to solve generalized multicriteria optimization problems using the simple genetic algorithm , 1995 .

[7]  P. J. Fleming,et al.  Initial Study of Multi-Objective Genetic Algorithms for Scheduling the Production of Chilled Ready Meals , 1996 .

[8]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[9]  J. Eheart,et al.  Genetic-algorithm-based design of groundwater quality monitoring system , 1993 .

[10]  C. B. Lucasius,et al.  Multicriteria target vector optimization of analytical procedures using a genetic algorithm: Part I. Theory, numerical simulations and application to atomic emission spectroscopy , 1992 .

[11]  Seiichi Kawata,et al.  AI in Control System Design Using a New Paradigm for Design Representation , 1996 .

[12]  David R. Wallace,et al.  Design search under probabilistic specifications using genetic algorithms , 1996, Comput. Aided Des..

[13]  S. Ranjithan,et al.  Using genetic algorithms to solve a multiple objective groundwater pollution containment problem , 1994 .

[14]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[15]  H. Ishibuchi,et al.  MOGA: multi-objective genetic algorithms , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[16]  Ashok D. Belegundu,et al.  Multi-objective optimization of laminated ceramic composites using genetic algorithms , 1994 .

[17]  Mitsuo Gen,et al.  Evolutionary computation for multicriteria solid transportation problem with fuzzy numbers , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[18]  Peter J. Fleming,et al.  An initial study of practical multiobjective production scheduling using genetic algorithms , 1996 .

[19]  Patrick D. Surry,et al.  A Multi-objective Approach to Constrained Optimisation of Gas Supply Networks: the COMOGA Method , 1995, Evolutionary Computing, AISB Workshop.

[20]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[21]  Ching-Lai Hwang,et al.  A new approach for multiple objective decision making , 1993, Comput. Oper. Res..

[22]  Jeffrey Horn,et al.  Multiobjective Optimization Using the Niched Pareto Genetic Algorithm , 1993 .

[23]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[24]  James E. Baker,et al.  Adaptive Selection Methods for Genetic Algorithms , 1985, International Conference on Genetic Algorithms.

[25]  Marc Despontin,et al.  Multiple Criteria Optimization: Theory, Computation, and Application, Ralph E. Steuer (Ed.). Wiley, Palo Alto, CA (1986) , 1987 .

[26]  A. Osyczka,et al.  A modified distance method for multicriteria optimization, using genetic algorithms , 1996 .

[27]  Hajime Kita,et al.  Multi-Objective Optimization by Means of the Thermodynamical Genetic Algorithm , 1996, PPSN.

[28]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. II. Application example , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[29]  N. Mori,et al.  A thermodynamical selection rule for the genetic algorithm , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[30]  Gunar E. Liepins,et al.  Genetic Algorithms Applications to Set Covering and Traveling Salesman Problems , 1990 .

[31]  Carlos M. Fonseca,et al.  Multiobjective genetic algorithms , 1993 .

[32]  C.S. Chang,et al.  Genetic algorithm based bicriterion optimisation for traction substations in DC railway system , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[33]  Peter J. Fleming,et al.  Multiobjective genetic algorithms made easy: selection sharing and mating restriction , 1995 .

[34]  Angus R. Simpson,et al.  Genetic algorithms compared to other techniques for pipe optimization , 1994 .

[35]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[36]  Hisashi Tamaki,et al.  Generation of a Set of Pareto-Optimal Solutions by Genetic Algorithms , 1995 .

[37]  Carlo Poloni,et al.  Hybrid GA for Multi Objective Aerodynamic Shape Optimisation , 1995 .

[38]  H. Raiffa,et al.  Decisions with Multiple Objectives , 1993 .

[39]  Peter J. Fleming,et al.  On the Performance Assessment and Comparison of Stochastic Multiobjective Optimizers , 1996, PPSN.

[40]  William B. Langdon,et al.  Using data structures within genetic programming , 1996 .

[41]  Hisao Ishibuchi,et al.  Multi-objective genetic local search algorithm , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[42]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[43]  Godfrey A. Walters,et al.  Genetic Operators and Constraint Handling for Pipe Network Optimization , 1995, Evolutionary Computing, AISB Workshop.

[44]  Carlos M. Fonseca,et al.  Multiobjective optimal controller design with genetic algorithms , 1994 .

[45]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[46]  Dirk Thierens,et al.  Elitist recombination: an integrated selection recombination GA , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[47]  Trevor N. Mudge,et al.  A Parallel Genetic Algorithm for Multiobjective Microprocessor Design , 1995, ICGA.

[48]  Kit Po Wong,et al.  Hybrid GA/SA algorithms for evaluating trade-off between economic cost and environmental impact in generation dispatch , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[49]  Michael P. Fourman,et al.  Compaction of Symbolic Layout Using Genetic Algorithms , 1985, ICGA.

[50]  Gunar E. Liepins,et al.  Some Guidelines for Genetic Algorithms with Penalty Functions , 1989, ICGA.

[51]  J. Eheart,et al.  Using Genetic Algorithms to Solve a Multiobjective Groundwater Monitoring Problem , 1995 .

[52]  DeceptionSushil J. LouisDepartment Pareto Optimality, Ga-easiness and Deception , 1993 .

[53]  Hajime Kita,et al.  Multi-objective optimization by genetic algorithms: a review , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[54]  Richard de Neufville,et al.  APPLIED SYSTEMS ANALYSIS: ENGINEERING PLANNING AND TECHNOLOGY MANAGEMENT , 1990 .