Outlier Detection for Video Session Data Using Sequential Pattern Mining

The growth of Internet video and over-the-top transmission techniqueshas enabled online video service providers to deliver highquality video content to viewers. To maintain and improve thequality o ...

[1]  Jianyong Wang,et al.  Mining sequential patterns by pattern-growth: the PrefixSpan approach , 2004, IEEE Transactions on Knowledge and Data Engineering.

[2]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[3]  Vladimir I. Levenshtein,et al.  Binary codes capable of correcting deletions, insertions, and reversals , 1965 .

[4]  Bruno Rossi,et al.  Anomaly detection in Smart Grid data: An experience report , 2016, 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC).

[5]  Delbert Dueck,et al.  Clustering by Passing Messages Between Data Points , 2007, Science.

[6]  Enamul Hoque,et al.  Holmes: A Comprehensive Anomaly Detection System for Daily In-home Activities , 2015, 2015 International Conference on Distributed Computing in Sensor Systems.

[7]  Philip Chan,et al.  Toward accurate dynamic time warping in linear time and space , 2007, Intell. Data Anal..

[8]  Devendra Verma,et al.  Frequent Item Set Mining – A Review , .

[9]  Ramakrishnan Srikant,et al.  Mining sequential patterns , 1995, Proceedings of the Eleventh International Conference on Data Engineering.

[10]  Umeshwar Dayal,et al.  FreeSpan: frequent pattern-projected sequential pattern mining , 2000, KDD '00.

[11]  Ramesh K. Sitaraman,et al.  Video Stream Quality Impacts Viewer Behavior: Inferring Causality Using Quasi-Experimental Designs , 2012, IEEE/ACM Transactions on Networking.

[12]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[13]  Qiming Chen,et al.  PrefixSpan,: mining sequential patterns efficiently by prefix-projected pattern growth , 2001, Proceedings 17th International Conference on Data Engineering.

[14]  Yi Li,et al.  Bootstrapping a data mining intrusion detection system , 2003, SAC '03.

[15]  Mohammed J. Zaki,et al.  SPADE: An Efficient Algorithm for Mining Frequent Sequences , 2004, Machine Learning.

[16]  Ricardo J. G. B. Campello,et al.  On the Comparison of Relative Clustering Validity Criteria , 2009, SDM.

[17]  Das Amrita,et al.  Mining Association Rules between Sets of Items in Large Databases , 2013 .

[18]  Johannes Gehrke,et al.  Sequential PAttern mining using a bitmap representation , 2002, KDD.

[19]  Jian Pei,et al.  Mining frequent patterns without candidate generation , 2000, SIGMOD '00.

[20]  P. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .

[21]  A. Azzouz 2011 , 2020, City.

[22]  Jiawei Han,et al.  Frequent pattern mining: current status and future directions , 2007, Data Mining and Knowledge Discovery.

[23]  VARUN CHANDOLA,et al.  Anomaly detection: A survey , 2009, CSUR.

[24]  Ramakrishnan Srikant,et al.  Mining Sequential Patterns: Generalizations and Performance Improvements , 1996, EDBT.

[25]  Jiawei Han,et al.  Sequential Pattern Mining , 2014, Frequent Pattern Mining.

[26]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[27]  Christian Borgelt,et al.  Frequent item set mining , 2012, WIREs Data Mining Knowl. Discov..

[28]  Michalis Vazirgiannis,et al.  c ○ 2001 Kluwer Academic Publishers. Manufactured in The Netherlands. On Clustering Validation Techniques , 2022 .

[29]  Jiawei Han,et al.  Data Mining: Concepts and Techniques , 2000 .