Uncertainty Principles for Time-Frequency Representations
暂无分享,去创建一个
[1] G. Hardy. A Theorem Concerning Fourier Transforms , 1933 .
[2] Harry Dym,et al. Fourier series and integrals , 1972 .
[3] A. Berthier,et al. On support properties of Lp-functions and their Fourier transforms , 1977 .
[4] H. Feichtinger. On a new Segal algebra , 1981 .
[5] M. Cowling,et al. Bandwidth Versus Time Concentration: The Heisenberg–Pauli–Weyl Inequality , 1984 .
[6] M. Benedicks. On Fourier transforms of functions supported on sets of finite Lebesgue measure , 1985 .
[7] G. Folland. Harmonic analysis in phase space , 1989 .
[8] D. Donoho,et al. Uncertainty principles and signal recovery , 1989 .
[9] L. Cohen,et al. Time-frequency distributions-a review , 1989, Proc. IEEE.
[10] E. Lieb. Integral bounds for radar ambiguity functions and Wigner distributions , 1990 .
[11] L. Hörmander. A uniqueness theorem of Beurling for Fourier transform pairs , 1991 .
[12] F. Hlawatsch,et al. Linear and quadratic time-frequency signal representations , 1992, IEEE Signal Processing Magazine.
[13] J. Benedetto,et al. Fourier transform inequalities with measure weights , 1992 .
[14] V. Havin. The Uncertainty Principle in Harmonic Analysis , 1994 .
[15] K. Gröchenig. An uncertainty principle related to the Poisson summation formula , 1996 .
[16] G. Folland,et al. The uncertainty principle: A mathematical survey , 1997 .
[17] S. K. Ray,et al. Uncertainty principles like Hardy's theorem on some Lie groups , 1998, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.
[18] Philippe Jaming,et al. Principe d'incertitude qualitatif et reconstruction de phase pour la transformée de Wigner , 1998 .
[19] H. Feichtinger,et al. A Banach space of test functions for Gabor analysis , 1998 .
[20] A. Janssen. Proof of a conjecture on the supports of Wigner distributions , 1998 .
[21] Karlheinz Gröchenig,et al. Foundations of Time-Frequency Analysis , 2000, Applied and numerical harmonic analysis.
[22] K. Gröchenig,et al. Hardy's Theorem and the Short‐Time Fourier Transform of Schwartz Functions , 2001 .
[23] Joseph D. Lakey,et al. Embeddings and Uncertainty Principles for Generalized Modulation Spaces , 2001 .
[24] P. Jaming,et al. Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms , 2001, math/0102111.
[25] K. Gröchenig,et al. Uncertainty principles as embeddings of modulation spaces , 2002 .