A novel memristive time–delay chaotic system without equilibrium points

Memristor and time–delay are potential candidates for constructing new systems with complex dynamics and special features. A novel time–delay system with a presence of memristive device is proposed in this work. It is worth noting that this memristive time–delay system can generate chaotic attractors although it possesses no equilibrium points. In addition, a circuitry implementation of such time–delay system has been introduced to show its feasibility.

[1]  Nikolay V. Kuznetsov,et al.  Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor , 2014 .

[2]  F. Corinto,et al.  Memristor Model Comparison , 2013, IEEE Circuits and Systems Magazine.

[3]  Qingdu Li,et al.  Hyperchaos in a 4D memristive circuit with infinitely many stable equilibria , 2015 .

[4]  Leon O. Chua,et al.  Simplest Chaotic Circuit , 2010, Int. J. Bifurc. Chaos.

[5]  Keiji Konishi,et al.  Design and experimental verification of multiple delay feedback control for time-delay nonlinear oscillators , 2011, Nonlinear Dynamics.

[6]  Shukai Duan,et al.  A novel delayed chaotic neural model and its circuitry implementation , 2009, Comput. Math. Appl..

[7]  Nikolay V. Kuznetsov,et al.  Algorithms for searching for hidden oscillations in the Aizerman and Kalman problems , 2011 .

[8]  Luigi Fortuna,et al.  Design of Time-Delay Chaotic Electronic Circuits , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[9]  Guodong Zhang,et al.  Global exponential stability of a class of memristor-based recurrent neural networks with time-varying delays , 2012, Neurocomputing.

[10]  Ravi P. Agarwal,et al.  Analysis of mathematics and dynamics in a food web system with impulsive perturbations and distributed time delay , 2010 .

[11]  Ioannis M. Kyprianidis,et al.  A chaotic path planning generator for autonomous mobile robots , 2012, Robotics Auton. Syst..

[12]  Fernando Corinto,et al.  Memristor Models in a Chaotic Neural Circuit , 2013, Int. J. Bifurc. Chaos.

[13]  L.O. Chua,et al.  Memristive devices and systems , 1976, Proceedings of the IEEE.

[14]  Qingyun Wang,et al.  Bifurcation dynamics of the modified physiological model of artificial pancreas with insulin secretion delay , 2011 .

[15]  Vladimir I. Ponomarenko,et al.  An experimental digital communication scheme based on chaotic time-delay system , 2013 .

[16]  Fernando Corinto,et al.  Analysis of current–voltage characteristics for memristive elements in pattern recognition systems , 2012, Int. J. Circuit Theory Appl..

[17]  K. Ikeda,et al.  High-dimensional chaotic behavior in systems with time-delayed feedback , 1987 .

[18]  Henning U. Voss,et al.  Real-Time Anticipation of Chaotic States of an Electronic Circuit , 2002, Int. J. Bifurc. Chaos.

[19]  Ronald Tetzlaff,et al.  Memristors and Memristive Systems , 2014 .

[20]  Ahmet Uçar,et al.  On the chaotic behaviour of a prototype delayed dynamical system , 2003 .

[21]  Massimiliano Di Ventra,et al.  Experimental demonstration of associative memory with memristive neural networks , 2009, Neural Networks.

[22]  Nikolay V. Kuznetsov,et al.  Hidden attractor and homoclinic orbit in Lorenz-like system describing convective fluid motion in rotating cavity , 2015, Commun. Nonlinear Sci. Numer. Simul..

[23]  Ioannis M. Kyprianidis,et al.  Image encryption process based on chaotic synchronization phenomena , 2013, Signal Process..

[24]  Sundarapandian Vaidyanathan,et al.  Analysis and adaptive synchronization of eight-term 3-D polynomial chaotic systems with three quadratic nonlinearities , 2014 .

[25]  Guanrong Chen,et al.  A chaotic system with only one stable equilibrium , 2011, 1101.4067.

[26]  Julien Clinton Sprott,et al.  Simple Chaotic flows with One Stable equilibrium , 2013, Int. J. Bifurc. Chaos.

[27]  Unas Tama,et al.  TWO-SCROLL ATTRACTOR IN A DELAY DYNAMICAL SYSTEM , 2007 .

[28]  Zhong Liu,et al.  Generalized Memory Element and Chaotic Memory System , 2013, Int. J. Bifurc. Chaos.

[29]  I. Raja Mohamed,et al.  Design of Threshold Controller Based Chaotic Circuits , 2010, Int. J. Bifurc. Chaos.

[30]  Takashi Nagatani,et al.  Chaos and Dynamical Transition of a Single Vehicle Induced by Traffic Light and Speedup , 2005 .

[31]  Luigi Fortuna,et al.  A chaotic circuit based on Hewlett-Packard memristor. , 2012, Chaos.

[32]  Jinde Cao,et al.  Synchronization of memristor-based recurrent neural networks with two delay components based on second-order reciprocally convex approach , 2014, Neural Networks.

[33]  J. Kurths,et al.  Generalized variable projective synchronization of time delayed systems. , 2013, Chaos.

[34]  Zhigang Zeng,et al.  Dynamic behaviors of memristor-based recurrent neural networks with time-varying delays , 2012, Neural Networks.

[35]  Zhenya He,et al.  Chaotic behavior in first-order autonomous continuous-time systems with delay , 1996 .

[36]  Bharathwaj Muthuswamy,et al.  Implementing Memristor Based Chaotic Circuits , 2010, Int. J. Bifurc. Chaos.

[37]  Mustak E. Yalcin,et al.  Multi-scroll and hypercube attractors from a general jerk circuit using Josephson junctions , 2007 .

[38]  Luigi Fortuna,et al.  Experimental synchronization of single-transistor-based chaotic circuits. , 2007, Chaos.

[39]  Laurent Larger,et al.  Routes to chaos and multiple time scale dynamics in broadband bandpass nonlinear delay electro-optic oscillators. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  G. Leonov,et al.  Localization of hidden Chuaʼs attractors , 2011 .

[41]  Julien Clinton Sprott,et al.  Simple chaotic flows with a line equilibrium , 2013 .

[42]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[43]  J. Sprott Elegant Chaos: Algebraically Simple Chaotic Flows , 2010 .

[44]  L. Chua Memristor-The missing circuit element , 1971 .

[45]  Guang Zeng,et al.  Hyperchaos and horseshoe in a 4D memristive system with a line of equilibria and its implementation , 2014, Int. J. Circuit Theory Appl..

[46]  Li Changguo,et al.  Effect of delay on a predator–prey model with parasitic infection , 2011 .

[47]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[48]  J Joshua Yang,et al.  Memristive devices for computing. , 2013, Nature nanotechnology.

[49]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[50]  Zidong Wang,et al.  Image encryption using chaotic coupled map lattices with time-varying delays ☆ , 2010 .

[51]  Nikolay V. Kuznetsov,et al.  Hidden attractors in Dynamical Systems. From Hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman Problems to Hidden Chaotic Attractor in Chua Circuits , 2013, Int. J. Bifurc. Chaos.

[52]  Chuandong Li,et al.  Stability and bifurcation analysis in tri-neuron model with time delay , 2007 .

[53]  O. Rössler An equation for continuous chaos , 1976 .

[54]  Lishan Liu,et al.  Positive solutions for a fractional boundary value problem with changing sign nonlinearity , 2012 .

[55]  K. Ikeda,et al.  Optical Turbulence: Chaotic Behavior of Transmitted Light from a Ring Cavity , 1980 .

[56]  Guodong Zhang,et al.  Exponential synchronization of delayed memristor-based chaotic neural networks via periodically intermittent control , 2014, Neural Networks.

[57]  S. M. Lee,et al.  Secure communication based on chaotic synchronization via interval time-varying delay feedback control , 2011 .

[58]  Bharathwaj Muthuswamy,et al.  Memristor-Based Chaotic Circuits , 2009 .

[59]  Julien Clinton Sprott,et al.  Elementary quadratic chaotic flows with no equilibria , 2013 .

[60]  Zhouchao Wei,et al.  Dynamical behaviors of a chaotic system with no equilibria , 2011 .

[61]  Shlomo Havlin,et al.  Multifractal chaotic attractors in a system of delay-differential equations modeling road traffic. , 2002, Chaos.

[62]  Sallee Klein,et al.  Memristive Adaptive Filters , 2010 .

[63]  Dongsheng Yu,et al.  Hyperchaos in a memristor-Based Modified Canonical Chua's Circuit , 2012, Int. J. Bifurc. Chaos.

[64]  Müstak E. Yalçin,et al.  Multiscroll Chaotic attractors from a Hysteresis Based Time-Delay Differential equation , 2010, Int. J. Bifurc. Chaos.

[65]  Zhigang Zeng,et al.  Exponential stability analysis of memristor-based recurrent neural networks with time-varying delays , 2012, Neurocomputing.

[66]  Vladimir I. Ponomarenko,et al.  Encryption and decryption of information in chaotic communication systems governed by delay-differential equations , 2008 .

[67]  Santo Banerjee,et al.  Chaos and Cryptography: A new dimension in secure communications , 2014 .

[68]  Nikolay V. Kuznetsov,et al.  Hidden attractor in smooth Chua systems , 2012 .

[69]  Leon O. Chua,et al.  Memristor Bridge Synapse-Based Neural Network and Its Learning , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[70]  Leon O. Chua,et al.  Three Fingerprints of Memristor , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[71]  Vladimir I. Ponomarenko,et al.  Hidden data transmission based on time-delayed feedback system with switched delay time , 2012 .

[72]  Thang Manh Hoang,et al.  A secure communication system using projective-lag and/or projective-anticipating synchronizations of coupled multidelay feedback systems , 2008 .

[73]  Kyungmin Kim,et al.  Memristor Applications for Programmable Analog ICs , 2011, IEEE Transactions on Nanotechnology.

[74]  V. Sundarapandian,et al.  Analysis, control, synchronization, and circuit design of a novel chaotic system , 2012, Math. Comput. Model..

[75]  S. Boccaletti,et al.  Synchronization of chaotic systems , 2001 .

[76]  Luigi Fortuna,et al.  Simple Memristive Time-Delay Chaotic Systems , 2013, Int. J. Bifurc. Chaos.

[77]  Xiao-Song Yang,et al.  Generation of multi-scroll delayed chaotic oscillator , 2006 .

[78]  Julien Clinton Sprott,et al.  A simple chaotic delay differential equation , 2007 .

[79]  Alan V. Oppenheim,et al.  Circuit implementation of synchronized chaos with applications to communications. , 1993, Physical review letters.

[80]  S. Strogatz Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering , 1995 .

[81]  Sajad Jafari,et al.  Three-dimensional chaotic autonomous system with only one stable equilibrium: Analysis, circuit design, parameter estimation, control, synchronization and its fractional-order form , 2014 .

[82]  Ainuddin Wahid Abdul Wahab,et al.  Synchronization in coupled Ikeda delay systems , 2014 .

[83]  J. Sprott,et al.  Some simple chaotic flows. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.