On the stabilization of controllable and observable systems by an output feedback law

For control systems which can be locally stabilized in small time by means of a dynamic periodic time-varyingstate feedback law, we give a sufficient condition on Lie derivatives of the output for local stabilization in small time by means of a dynamic periodic time-varyingoutput feedback law. If the system is analytic our sufficient condition is also necessary.

[1]  H. Khalil,et al.  Output feedback stabilization of fully linearizable systems , 1992 .

[2]  Frédéric Viel Stabilité des systèmes non linéaires contrôlés par retour d'état estimé. Application aux réacteurs de polymérisation et aux colonnes à distiller , 1994 .

[3]  M. Goresky,et al.  Stratified Morse theory , 1988 .

[4]  H. Sussmann A general theorem on local controllability , 1987 .

[5]  H. Hermes Control systems which generate decomposable Lie algebras , 1982 .

[6]  Eduardo D. Sontag,et al.  Conditions for Abstract Nonlinear Regulation , 1981, Inf. Control..

[7]  W. Dayawansa,et al.  Global stabilization by output feedback: examples and counterexamples , 1994 .

[8]  A. Tornambè Output feedback stabilization of a class of non-minimum phase nonlinear systems , 1992 .

[9]  A. Isidori Nonlinear Control Systems , 1985 .

[10]  J. Gauthier,et al.  A simple observer for nonlinear systems applications to bioreactors , 1992 .

[11]  J. Coron Linearized Control Systems and Applications to Smooth Stabilization , 1994 .

[12]  O. Keller,et al.  H. S. M. Coxeter — W. O. J. Moser, Generators and Relations for Discrete Groups. (Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, Band 14) X + 161 S. m. 54 Fig. Berlin/Heidelberg/New York 1965. Springer‐Verlag. Preis geb. DM 32,— , 1965 .

[13]  Eduardo D. Sontag,et al.  FEEDBACK STABILIZATION OF NONLINEAR SYSTEMS , 1990 .

[14]  Rogelio Lozano,et al.  Adaptive control of continuous-time overmodeled plants , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[15]  A. Krener,et al.  Nonlinear controllability and observability , 1977 .

[16]  J. Zabczyk Some comments on stabilizability , 1989 .

[17]  J. Coron LINKS BETWEEN LOCAL CONTROLLABILITY AND LOCAL CONTINUOUS STABILIZATION , 1992 .

[18]  H. Sussmann,et al.  Controllability of nonlinear systems , 1972 .

[19]  R. Lozano-Leal Robust Adaptive Regulation without Persistent Excitation , 1989, 1989 American Control Conference.

[20]  M. Golubitsky,et al.  Stable mappings and their singularities , 1973 .

[21]  J. Coron On the stabilization in finite time of locally controllable systems by means of continuous time-vary , 1995 .

[22]  Jean-Michel Coron,et al.  Global asymptotic stabilization for controllable systems without drift , 1992, Math. Control. Signals Syst..

[23]  A. Teel,et al.  Global stabilizability and observability imply semi-global stabilizability by output feedback , 1994 .

[24]  Eduardo Sontag,et al.  Remarks on continuous feedback , 1980, 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[25]  H. Sussmann Lie Brackets and Local Controllability: A Sufficient Condition for Scalar-Input Systems , 1983 .

[26]  Claude Samson,et al.  Velocity and torque feedback control of a nonholonomic cart , 1991 .

[27]  Jean-Paul Gauthier,et al.  Observability and observers for non-linear systems , 1986 .

[28]  Eduardo Sontag,et al.  Orders of Input/Output Differential Equations and State-Space Dimensions , 1995 .

[29]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .